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This dissertation studies stochastic dynamic systems and their stability 
properties such as stationarity, ergodicity and mixing. It introduces various 
new theoretical results that can be used to obtain these properties for large 
classes of systems that were previously inaccessible. Such a model is then 
introduced and studied to describe time series data containing explosive 
bubble behaviour, including an empirical study on the Bitcoin/US dollar 
exchange rate. Stability is also studied for a collection of macro economic 
stochastic equilibrium models in terms of approximating solution methods. 
Requiring stability in such a setting gives motivation to a new solution 
method denoted transformed perturbation, which is demonstrated to perform 
very well relative to existing local approximation methods. 
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Chapter 1

Introduction

1.1 Time-series literature: a selective review

A time series is a collection of observations that are indexed in the order of time. Such data

structures are found in many fields of science (such as economics, finance, demographics,

etc) and business (such as risk assessment, inventory management, logistics optimization,

etc). The main motivation for studying time series is the assumption that the past and the

future behaviour of a process contain similarities, and thus that one can build predictions

for the future based on past observations. The connection between past and future is quite

a delicate one, if the dependence is very weak then prediction is fruitless, while a too

complex dependence makes prediction very complicated. Statistical analysis and mod-

elling tries to describe the dependence by designing a collection of possible probabilistic

descriptions of the data, called a model, and then using the observed past to decide on the

most appropriate specification within the model through the construction of an estimator.

The popularisation of time series models started with linear models such as the au-

toregressive moving average model (ARMA) of Box et al. (1970). The fundamental idea

was to let dependence change over time and instead fix the conditional dependence. That

is, given yesterday we expect different dependence for today and tomorrow, but the way

today depends on yesterday and tomorrow depends on today is the same. The linearity

of the models makes it possible to get closed forms for most entities of interest and thus

makes the analysis of the models very tractable. ARMA models are able to describe a

large class of time series dynamics, in fact, the renowned Wold decomposition theorem
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(Wold, 1938) shows that any covariance-stationary time series has a representation as the

sum of a deterministic time series and an infinite moving average. Therefore such time

series can theoretically be approximated by taking a large number of lags in the ARMA

specification.

Nevertheless, a statistical model is only as strong as the closest description to the ac-

tual data generating process that it contains. Therefore statisticians have proceeded by

enlarging models to increase the likeliness of containing such a close description. Non-

linear statistical models have become increasingly popular with models such as thresh-

old models (Tong and Lim, 1980; Zakoian, 1994) or Markov regime switching models

(Hamilton, 1989) that allow different ranges of the state space to have distinct effects on

the dependence structure. A general way to extend a given model to a larger collection of

distributions is to make it dynamic by choosing a parameter and making it time-varying.

The most famous application of this approach can be found in heteroskedastic volatility

models. The pioneering examples of such models are the ARCH model of (Engle, 1982),

that has led to a large portion of literature on extended specifications such as the GARCH

(Bollerslev, 1986) and the EGARCH (Nelson, 1991) model, and the stochastic volatility

model of Taylor (2008) that has lead to many extensions both specification (Harvey and

Shephard, 1996) and estimation (Jacquier et al., 2002) wise.

There are two general classes of time-varying parameter models. The first class, called

parameter-driven, specifies the dynamics of the time-varying parameter as a new stochas-

tic data generating process with its own disturbance process. The second class, denoted

observation-driven, describes the time varying parameter at each point of time as a func-

tion of a, potentially infinitely long, sequence of past observations of the data. Both

strands of time-varying parameter time series models have their advantages and disad-

vantages. Parameter driven models typically satisfy desired statistical stability properties,

however the likelihood usually does not have a closed form so that computationally in-

tensive simulation techniques are needed to find the best fitting specification within the

model. Observation driven models do have a closed form for the likelihood and thus

are generally easier to estimate. However, showing that the model is statistically stable

typically requires careful mathematical analysis.

2



1.1. TIME-SERIES LITERATURE: A SELECTIVE REVIEW

Stability features of both the data generating process behind the observations and the

unobserved time varying parameter are very helpful. Statistical properties such as sta-

tionarity, ergodicity and mixing provide the basis for the analysis of limiting estimator

behavior as the amount of observations goes to infinity. Specifically they imply versions

of the law of large numbers and the central limit theorem that can then be applied to

show consistency (convergence to the true unknown model) and asymptotic normality

(convergence rate and asymptotic distribution). The stability properties for linear models

can be fully characterised using lyapunov exponents as is done in Bougerol and Picard

(1992a,b). Nonlinear models require a lot more work and have traditionally been stud-

ied using Markov chain theory to obtain geometric ergodicity as in (Meyn and Tweedie,

2012). Verifying the underlying assumptions regarding proper commuting behavior of the

Markov chain over the state space can be difficult, but once those are satisfied, ergodic-

ity follows very generally from moderate “Foster-Lyapunov” drift criteria that essentially

ensure that the Markov chain never wanders too far off.

Time-varying parameter models pose a new challenge, because the parameter process

itself is an unobserved component of the model. As a solution statisticians construct an

approximation for the process by choosing a starting point and then recursively filtering

the time-varying parameter. Deriving limiting behaviour of this process then requires that

the approximation converges to a stable solution, a property that has been denoted invert-

ibility in Straumann (2005). Bougerol (1993) and Straumann (2005) propose a method

to obtain invertibility that is based on stochastic recurrence equations (SREs) satisfying

contraction conditions. Their result is a stochastic variant of Banach’s fixed point theorem

and requires the stochastic recurrence equation (SRE) to be uniformly contracting over the

whole state space, on average. Although the condition is fairly elementary to write down

for a given model, it introduces some complications. The one step contraction condition

is typically possible to derive analytically, but imposes a very strict restriction on the pos-

sible parameter values within the model. Typically, SREs exhibit non contractive areas

over small parts of the state space, which by the uniform condition imply that the stabil-

ity parameter region becomes impractically small. Resorting to higher fold contraction

conditions leads to larger stability regions, however these regions cannot be analytically

determined as they depend on the unknown data generating process. Alternatively, one

3
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can compute empirical stability regions as in Wintenberger (2013) and Blasques et al.

(2018a).

1.2 Contributions of the thesis

This thesis contains three chapters of research that explore the stability of time series

models in a purely theoretic, a financial and a macroeconomic setting. Chapter 2 and

Chapter 3 are somewhat linked and explore invertibility for a class of observation driven

time-varying parameter models. Chapter 4 is fully self contained and discusses nonlin-

ear macro economic time series models without time-varying parameters. I provide a

short description of each chapter below, a more detailed explanation including relevant

references in the literature can be found in the introduction of each specific chapter.

Chapter 2 is joint work with Francisco Blasques and discusses a novel invertibility

condition that provides a stability region for a large collection of models that is typically

impossible to analyze using the contraction condition of Bougerol (1993). Specifically the

condition allows for discontinuities and explosive, non-contracting or chaotic behavior of

the SRE over parts of the state space. In return for relaxing the contraction condition

we impose that the SRE satisfies a resetting requirement that involves there being a pos-

itive probability of the SRE updating to a value that is independent of the past of the

process. The proof that this implies invertibility can be summarised in one sentence: it

is not important how far two paths diverge from one another as long as they eventually

collapse to the same value. That means that between any two resetting times, any imag-

inable sample path behavior is allowed as the reset ensures that it returns to a fixed value.

The resetting condition seems strong, but is typically satisfied in time series that exhibit

bubble collapses, in which case the collapse itself can be chosen as the resetting moment.

Many time series contain these collapsing dynamics such as volatility bubbles studied in

Saı̈di (2003) and Saı̈di and Zakoian (2006), financial bubbles studied in Gouriéroux and

Zakoı̈an (2013, 2017), Blasques et al. (2018b) or Chapter 3 of this thesis, and time se-

ries for overshooting predator-prey populations such as the famous Canadian lynx-hare

and wolf-moose datasets studied in Tsay (1989) or Teräsvirta (1994). Additionally, the

framework lends itself naturally to regime switching models, where we then make one

4
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regime independent of the past so that it enforces a reset and in return get complete free-

dom for the other regimes. We illustrate the generality of the theory and how to apply

it by deriving the specific parameter region for the volatility bubble model in Saı̈di and

Zakoian (2006).

Chapter 3 is joint work with Francisco Blasques and Siem Jan Koopman and studies

speculative bubbles in time series of financial asset prices. The rational expectations

literature on asset pricing models the asset price process as the sum of a fundamental value

process and a locally explosive process that describes a burst followed by sharp mean-

reverting dynamics. We mimic this approach within an observation driven time-varying

parameter model, where we split the level in a time varying fundamental value process

and a bubble specification. We provide a general framework that encompasses a wide

possibility of bubble dynamics as the interplay between the fundamental value and bubble

process allows for various impulse response functions. We estimate the model using a

classical maximum likelihood approach. All the stability properties such as stationarity,

ergodicity, mixing and invertibility are proven using the theoretical results from Chapter

2. We illustrate the flexibility of the model by filtering the bitcoin / US dollar exchange

rate around its biggest relative bubble and show that in sample predictions anticipate the

bubble collapse in advance. We give some insights into the advantages of observation

driven models and the ease at which they allow for the derivation of quantities such as

bubble burst probabilities, bubble emergence probabilities or expected bubble life times.

Chapter 4 is joint work with Francisco Blasques and provides econometric founda-

tions for perturbation, a well known method to approximate solutions of dynamic stochas-

tic equilibrium models. Many approximation methods exist and there are some properties

to keep in mind when selecting one, mainly: accuracy, speed, stability and accessabil-

ity. Arbitrarily accurate global approximation methods exist such as value function it-

eration (Bertsekas, 1987), projection (Judd, 1992) or machine learning Norets (2012).

Typically these methods are less accessible to the practitioner as they are more complex

to code. Moreover, traditionally these methods were too slow for an estimation setting and

thus require additional techniques such as parallel computing and entering parameters as

pseudo-states in the model. Perturbation (Judd and Guu, 1997; Schmitt-Grohé and Uribe,

2004) is the most commonly used method and focusses on speed and accessability by

5
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approximating the solution via a Taylor expansion around the deterministic steady state.

It is well known, however, that a higher-order polynomial, and thus perturbation, defines

an unstable dynamic system which produces explosive paths. This means that none of

the typical stability properties hold and thus that existence of relevant moments and con-

sistency or asymptotic normality of estimators cannot be derived. In order to deal with

the unstable dynamics of higher-order perturbation solutions, Kim et al. (2008) proposed

the pruning method. The pruning method has been successfully implemented in software

packages and effectively solves the problem of explosive dynamics. New complications

are introduced however, pruning is a simulation-based approximation and hence does not

provide a policy function. Moreover, the method has to sacrifice local accuracy of the ap-

proximation to obtain stability. Our paper introduces a simple correction to perturbation

solutions that is designed to enrich perturbation solutions with all the desirable stochas-

tic properties needed for parameter estimation and statistical inference. Our correction

transforms the standard perturbation approximation by replacing higher order monomials

in the Taylor expansion with transformed ones that are based on the transformed polyno-

mials introduced in Blasques et al. (2014). These transformed monomials force sample

paths that move far away from the deterministic steady state into linear dynamics, which

makes the resulting dynamic system a prime candidate to be analysed within a Markov

chain setting. We prove that transformed perturbation produces non explosive paths and

that solutions are stationary and ergodic with bounded moments to which sample mo-

ments of the process converge. Finally we demonstrate that our method is very accurate

within the setting of fast and accessible solution methods. We provide a detailed analysis

and comparison with both first order perturbation and pruning for two nonlinear DSGE

models in which higher order perturbation is infeasible.

6



Chapter 2

Stationarity, Ergodicity and Mixing of

Resetting Time Series

2.1 Introduction

Since the popularisation of linear time series models such as the autoregressive moving

average model (Box et al., 1970) for level modelling and the autoregressive conditional

heteroskedasticity (Engle, 1982) model for volatility modelling much innovation has been

made. Present-day, fitting time series with nonlinear models has become increasingly

common. A selection of such nonlinear methods that can be applied to both level and

volatility modelling are regime switching models (Hamilton, 1989), threshold models

(Tong and Lim, 1980; Zakoian, 1994) and score driven models (Creal et al., 2013; Harvey,

2013).

Stability properties of both data generated by a model and unobserved parameters

when filtering data are very useful. Knowing when a time series is stationary ergodic with

mixing properties allows one to apply limit theorems to obtain consistency and asymptotic

normality of estimators. However, ensuring stability of econometric models becomes in-

creasingly harder as the models get more complicated. Nonlinear dynamics imply that the

theory on Lyapunov exponents as developed in Bougerol and Picard (1992a,b) cannot be

used. Therefore one has to resort to more involved methods such as Markov chain theory

and geometric ergodicity (Meyn and Tweedie, 2012) or stochastic recurrence equation

theory as developed in Bougerol (1993) and Straumann (2005). These methods ensure
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stability by imposing that the updating function satisfies certain contraction or bounded

growth or drift properties. See for example Cline and Pu (1999) and Saı̈di and Zakoian

(2006) or Blasques et al. (2014) and Straumann (2005) for the application of these condi-

tions to various models.

This paper derives general stability conditions for a large collection of models that

are typically either infeasible or less efficient (in the sense of a smaller parameter space)

to analyse with the existing methods. This collection of models is characterised by a

property that we denote resetting, which requires that the model has a positive probability

to update to a fixed, but possibly stochastic, state, irrespective of its past values. The

resetting condition allows for very wild sample path behaviour between resetting times, as

the reset ensures that the sample path will return to a stable base line. That means that we

can include typically unstable dynamics such as explosive or very discontinuous updates

in the time series. The framework lends itself naturally to regime switching models, where

we are then free to make all but one regime as unstable as we want as long as we ensure

that the last regime enforces a reset.

The resetting condition might appear to be restrictive at first, but is often satisfied

in time series where sudden drops or increases are observed. Typical examples of such

time series are stocks exhibiting financial bubbles, where the crash of the bubble is the

moment where the time series resets. See for example the model in Blasques et al. (2018b)

and Chapter 3 of this thesis that is developed to describe the Bitcoin/USD exchange rate

studied in Hencic and Gouriéroux (2015). There the exchange rate Xt is modelled as the

sum of a stationary ergodic process µt and a nonnegative bubble process bt, where

bt = (ω + αbt−1)1{bt−1 < k(µt − c)}

with ω, α > 0 and k, c ∈ R. This model consists out of two regimes: one autoregressive

regime bt = ω + αbt−1 and one collapsing regime bt = 0. The bubble process bt−1 is

nonnegative, so if the innovation µt < c, then the indicator function does not hold for

any possible value of bt−1 and hence the bubble process will collapse/reset regardless of

its past values. Note that the stability conditions allow the autoregressive parameter α to

be greater than one in this model, in fact this is encouraged to describe bubble behaviour.

8



2.1. INTRODUCTION

This is something that is normally associated with unstable behaviour in autoregressive

processes.

An example of collapsing, and thus resetting, volatility dynamics can be found in a

model used by Saı̈di and Zakoian (2006) to study the real financial time series discussed

in Saı̈di (2003). They define the dynamics of a heteroskedastic time series (εt)t∈Z as

εt = σtηt,

σ2
t = ω + αε2t−11

{
ε2t−1 > kε2t−2

}
,

(2.1)

where (ηt)t∈Z is a strictly stationary and ergodic sequence of random variables, the pa-

rameters α and k are nonnegative and ω is positive. Similarly to the previous example the

parameter α is allowed to be greater than one and model (2.1) consists of two regimes.

One regime is the traditional ARCH(1) update σ2
t = ω + αε2t−1 and the other is the con-

ditional homoskedastic model σ2
t = ω. The model changes from the constant volatility

regime to the ARCH(1) specification when the relative variation ε2t−1/ε
2
t−2 becomes large,

indicating a setting in which it is more likely for the volatility to be time varying. The

collapse condition is harder to discern in this model, but occurs when two consecutive η’s

are much smaller than their predecessors. Saı̈di and Zakoian (2006) analyse the stability

of their model (2.1) using Markov chain theory. They show the existence of a stationary

and β-mixing solution, under the condition that the distribution of the underlying process

(ηt)t∈Z is independent and identically distributed (iid), has strict positive density and fixed

moments E(ηt) = 0 and E(η2
t ) = 1. Using our approach we can show the existence of a

unique, stationary and ergodic or ϕ-mixing solution, to which any sample path converges.

The assumptions needed to get these results are less strict than those imposed in Saı̈di

and Zakoian (2006). Our method also allows for extensions of the model with minimum

additional theoretical work.

The rest of the paper is structured as follows. Section 2.2 discusses stability condi-

tions for random functions on separable Banach spaces and states our results in their most

general form. Section 2.3 illustrates how to apply the theory to a practical model by con-

sidering a generalisation of model (2.1) and deriving the stability conditions for various

distributional assumptions. Moreover, we showcase the ease of application by deriving

the conditions for various practical examples including leverage effects and robust news

9
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impact curves and also show how the method can be used to derive moment bounds.

2.2 Stability results

In this section we prove our main results for resetting time series. Theorem 2.2.1 shows

the existence of a stationary ergodic solution to which all sample paths converge and The-

orem 2.2.4 discusses the existence of a solution that is ϕ-mixing at geometric rate. We

base our treatment of stability on stochastic recurrence equations (SREs) as is done in

Straumann (2005) and Straumann and Mikosch (2006). The main advantage of stochastic

recurrence equation (SRE) techniques is that they are very general. For example, proposi-

tion 7.6 in Kallenberg (2002) proves that any homogeneous Markov chain can be seen as

a solution to a SRE. We refer the reader to Diaconis and Freedman (1999) for a thorough

overview of SREs.

We will work with random elements on Banach spaces. This allows us to describe time

varying variables in econometric models as functions of the model parameters, which can

be used to obtain stronger inference results as is done in Straumann and Mikosch (2006).

Let S be a closed subset of a separable Banach space equipped with a norm ‖·‖ and Borel

sigma-algebra B(S) and let (E, E) be a measurable space. Let (ηt)t∈Z be a sequence of

stochastic elements taking values in E and let φ : S×E → S be a measurable map. Then

we can define a sequence of random functions (φt)t∈Z by setting φt := φ(·, ηt). Let T be

either Z or N. A stochastic process (Xt)t∈T taking values in S that satisfies

Xt+1 = φt(Xt) ∀t ∈ T (2.2)

is said to be a solution to the SRE associated with (φt)t∈Z if T = Z, and a partial solution

if T = N. We now construct a specific possible solution (Yt)t∈Z to (2.2) by using the

backward iterates defined as φ(0)
t = IdS and

φ
(m)
t = φt ◦ φt−1 · · · ◦ φt−m+1, m ∈ N.

10
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Let x ∈ S be an element such that

Yt+1 := lim
m→∞

φ
(m)
t (x) (2.3)

exists almost surely for all t ∈ Z. Bougerol (1993) and Straumann and Mikosch (2006)

show that this is the case under appropriate regularity conditions involving the contracting

behavior of each φt and the distribution of (φt)t∈Z. Moreover, they show that the sequence

of limits (Yt)t∈Z is then the unique ergodic solution to (2.2) and that any partial solution

converges to this unique one at a geometric rate as t→∞. In this article we pursue a sim-

ilar approach, we also focus on the limit of the backward iterates in (2.3), show that it is

well defined and that the resulting sequence (Yt)t∈Z possesses the right properties. How-

ever, we rely on considerably different conditions and replace the contraction condition

in Bougerol (1993) with a new resetting condition.

Assumption A. The sequence (φt)t∈Z satisfies the following conditions:

A1. The function φ is B(S)× E/B(S) measurable.

A2. The sequence (ηt)t∈Z is strictly stationary ergodic.

A3. There exists an M ∈ N and an event A ∈ EM such that (ηt, ηt−1, . . . , ηt−M+1) ∈ A

with positive probability and

(ηt, ηt−1, . . . , ηt−M+1) ∈ A ⇒ φ
(M)
t (x) = φ

(M)
t (y) ∀x, y ∈ S.

Condition A1 is rather weak and designed to ensure that backward iterates of (φt)t∈Z

evaluated at any point x ∈ S are proper random variables in S. Condition A2 is common

in the literature on SREs, note that it is less strict than assuming that the sequence (ηt)t∈Z

is independent and identically distributed. An in depth discussion on stationarity and

ergodicity can, for example, be found in chapter one of Krengel (1985). Condition A3 is

the resetting condition and states that there exists an event over M periods that guarantees

that the corresponding M ’th iterate is constant over S, but not necessarily over EM . This

implies that φ(M)
t is constant for a given realisation of (ηt)t∈Z in A and thus resets to one

11
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constant value, irrespective of its argument and hence the past values of a solution to the

SRE.

Under Assumption A we can prove that the limit of the backward iterates (2.3) ex-

ists, by showing that the sequence of backward iterates (φ
(m)
t (x))m∈N is almost surely

eventually constant. The proof relies on the fact that events of positive probability occur

infinitely often over time in a strictly stationary ergodic sequence. Therefore the event

(ηt, ηt−1, . . . , ηt−M+1) ∈ A occurs for infinitely many t ∈ Z and thus the limit of the

backward iterates trivially exists. Uniqueness and convergence of paths follow from the

same observation, since any two paths in model (2.2) will coincide at all such t, and

therefore must be the same (eventually).

Theorem 2.2.1. Let Assumption A hold and x ∈ S. Then the sequence (φ
(m)
t (x))m∈N is

almost surely eventually constant for all t ∈ Z. Consequently, (Yt)t∈Z is well defined,

strictly stationary ergodic and the unique solution to (2.2). Moreover, for any partial

solution (Ỹt)t∈N and function f : N→ R we have limt→∞ f(t)‖Yt − Ỹt‖ = 0.

We have to discuss some preliminary results on strictly stationary ergodic (SE) se-

quences before we can prove Theorem 2.2.1. One reason that SE sequences play a big

role in time series analysis is that they satisfy the conditions needed for Birkhoff’s ergodic

theorem, Birkhoff (1931). This theorem applied to an SE sequence of real valued random

variables (Xt)t∈N states that if E|X1| <∞, then almost surely

lim
n→∞

1

n

n∑
t=1

Xt = E(X1).

SE sequences are also easy to manipulate to create new SE sequences. We provide two

results from Straumann (2005).

Lemma 2.2.2. Let (E, E) and (Ẽ, Ẽ) be two measurable spaces, let (Xt)t∈Z be an SE

sequence of E-valued random elements and let f : EN → Ẽ be a EN/Ẽ measurable

function. Then the sequence of Ẽ-valued random elements (X̃t)t∈Z defined as X̃t =

f(Xt, Xt−1, . . .) is SE.

PROOF. See proposition 2.1.1 in Straumann (2005). �

12
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Lemma 2.2.3. Let (E, E) be a measurable space and let (S,B(S)) be a closed subset

of a separable Banach space endowed with its Borel sigma-algebra. Let (Xt)t∈Z be a

SE sequence of E-valued random elements and let (fm)m∈N be a sequence of functions

EN → S that are EN/B(S) measurable. Suppose that there exists a t ∈ Z such that

lim
m→∞

fm(Xt, Xt−1, . . .)

exists almost surely. Then there exists a function f : EN → S that is EN/B(S) measurable

and satisfies

X̃t := lim
m→∞

fm(Xt, Xt−1, . . .) = f(Xt, Xt−1, . . .)

for all t ∈ Z. Moreover, the sequence of S-valued random elements (X̃t)t∈Z is SE.

PROOF. See corollary 2.1.3 in Straumann (2005). �

PROOF OF THEOREM 2.2.1. Fix a t ∈ Z. We begin by proving that (φ
(m)
t (x))m∈N is

almost surely eventually constant. Define for s ≥ 0,

Is = 1{(ηt−s, ηt−s−1, . . . , ηt−s−M+1) ∈ A}.

The sequence (Is)s≥0 is SE by Lemma 2.2.2. Then, by Birkhoff’s ergodic theorem, almost

surely

lim
n→∞

1

n

n−1∑
s=0

Is = E(I0) = P((ηt, ηt−1, . . . , ηt−M+1) ∈ A) > 0.

This implies that the event Is = 1 occurs almost surely for infinitely many s ≥ 0. There-

fore we can choose the smallest such s, note that it is a random variable, and conclude

that

φ
(m)
t (x) = φ

(s)
t

(
φ

(m−s)
t−s (x)

)
= φ

(s)
t

(
φ

(M)
t−s

(
φ

(m−s−M)
t−s−M (x)

))
= φ

(s)
t

(
φ

(M)
t−s (x)

)
for all m ≥ s + M . It follows by Lemma 2.2.3 that the sequence (Yt)t∈Z is well defined

13
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and SE. Moreover, for s = 0 we get Yt+1 = φ
(M)
t (x) = φ

(M)
t (Yt−M+1) = φt(Yt), while

for s ≥ 1 we have

Yt+1 = lim
m→∞

φ
(m)
t (x) = φ

(s)
t

(
φ

(M)
t−s (x)

)
= φt

(
φ

(s−1)
t−1

(
φ

(M)
t−s (x)

))
= φt

(
lim
m→∞

φ
(m)
t−1(x)

)
= φt(Yt).

Therefore (Yt)t∈Z is a solution to (2.2). If (Xt)t∈Z is any other solution to (2.2), then

Xt+1 = φ
(s)
t

(
φ

(M)
t−s (Xt−s−M+1)

)
= φ

(s)
t

(
φ

(M)
t−s (Yt−s−M+1)

)
= Yt+1,

and hence it is identical to (Yt)t∈Z.

It remains to prove the final statement. Similarly as before, we can almost surely find

an s > M − 1 such that (ηs, ηs−1, . . . , ηs−M+1) ∈ A and thus

Yt+1 = φ
(t−s)
t

(
φ(M)
s (Yt−s−M+1)

)
= φ

(t−s)
t

(
φ(M)
s

(
Ỹt−s−M+1

))
= Ỹt+1

for all t ≥ s. We conclude that

lim
t→∞

f(t)‖Yt − Ỹt‖ = 0,

irrespective of the function f , because ‖Yt − Ỹt‖ is almost surely eventually zero. �

A consequence of Theorem 2.2.1 is that we can derive sufficient conditions for the

process (Yt)t∈Z to be ϕ-mixing. Let (Xt)t∈Z be a stationary process and let F ts, for−∞ ≤

s < t ≤ ∞, denote the sigma algebra generated by (Xs, Xs+1, . . . , Xt). Then the ϕ-

mixing coefficients for (Xt)t∈Z are given by

ϕX(t) = sup
C∈F0

−∞, D∈F∞t , P(C)>0

|P(D|C)− P(D)|

and the process is called ϕ-mixing if ϕX(t)→ 0 as t→∞.

Theorem 2.2.4. Suppose Assumption A holds and that additionally (ηt)t∈Z is ϕ-mixing

with geometric rate. Then (Yt, ηt)t∈Z is ϕ-mixing with geometric rate.

14
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The proof will depend on Theorem 2.2.1 as follows. Usually Yt+1 depends on the

entire past (ηt, ηt−1, . . .). However, if the event (ηt−s, ηt−s−1, . . . , ηt−s−M+1) ∈ A oc-

curs for some s ≥ 0, then Yt+1 = φ
(t−s)
t

(
φ

(M)
s (x)

)
and thus Yt+1 depends only on

(ηt, . . . , ηt−s−M+1). Therefore it will be enough to show that the probability that s is large

vanishes at a geometric rate. To show this we need the following two lemma’s.

Lemma 2.2.5. Let (E, E) and (Ẽ, Ẽ) be two measurable spaces, let (Xt)t∈Z be a sequence

of E-valued random elements that is ϕ-mixing (with geometric rate). For a m ∈ N we

denote f : Em → Ẽ to be a Em/Ẽ measurable function. Then the sequence of Ẽ-valued

random elements (X̃t)t∈Z defined as

X̃t = f(Xt, . . . , Xt−m)

is ϕ-mixing (with geometric rate).

PROOF. The sigma-algebra generated by (. . . , X̃−1, X̃0) is contained in the sigma-algebra

generated by (. . . , X−1, X0). Similarly, the sigma-algebra generated by (X̃t, X̃t+1, . . .) is

contained in the sigma-algebra generated by (Xt−m, Xt−m+1, . . .). Therefore ϕX̃(t) ≤

ϕX(t−m) for all t ≥ m. �

Lemma 2.2.6. Let (E, E) be a measurable space and let (Xi)i∈Z be a strictly stationary

sequence of E-valued random elements that is ϕ-mixing. Then for any B ∈ E such that

P(X1 /∈ B) < 1, we have

P

(
t⋂
i=1

{Xi /∈ B}

)
→ 0 as t→∞

at a geometric rate.

PROOF. For a real number z ∈ R we write bzc to denote the largest integer that is not

larger than z. Also, we use the ; symbol to denote joint probabilities. For any integer

15
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k ≤ t we have

P(Xt /∈ B; . . . ;X1 /∈ B)

=

bt/kc−1∏
i=0

P(Xt−ik /∈ B; . . . ;Xt−(i+1)k+1 /∈ B | Xt−(i+1)k /∈ B; . . . ;X1 /∈ B)

≤
bt/kc−1∏
i=0

P(Xt−ik /∈ B | Xt−(i+1)k /∈ B; . . . ;X1 /∈ B)

≤
bt/kc−1∏
i=0

P(Xt−ik /∈ B) + ϕX(k)

= (P(X1 /∈ B) + ϕX(k))bt/kc−1 .

Choose k big enough such that P(X1 /∈ B) + ϕX(k) < 1, which can be done since

ϕX(k) → 0 as k → ∞. Note that if any of the events that we conditioned on has proba-

bility zero, then the lemma follows immediately. �

PROOF OF THEOREM 2.2.4. For −∞ ≤ s < t ≤ ∞ we write Gts to denote the sigma

algebra generated by (ηs, ηs+1, . . . , ηt) and Ht
s to denote the sigma algebra generated by

((Ys, ηs), (Ys+1, ηs+1), . . . , (Yt, ηt)). Fix t ∈ N and let s ≥ 0 again be the random vari-

able that denotes the smallest number such that (ηt−s, ηt−s−1, . . . , ηt−s−M+1) ∈ A occurs.

Then we have Yt+1 = limm→∞ φ
(m)
t (x) = φ

(t−s)
t

(
φ

(M)
s (x)

)
. Therefore, for a B ∈ B(S)

and a k ≥ 0 the event {Yt+1 ∈ B ; s ≤ k} ∈ Gtt−k−M+1, since {s ≤ k} ∈ Gtt−k−M+1.

Similarly, for anyD ∈ H∞t the eventD∩{s ≤ t/2−M+1} ∈ G∞dt/2e, where we write dze

to denote the smallest integer that is not smaller than z. It follows for C ∈ H0
−∞ ⊆ G0

−∞,

by partitioning on s ≤ t/2−M + 1 and its complement, that

|P(D|C)− P(D)| ≤ ϕη(dt/2e) + P(D ; s > t/2−M + 1|C) + P(D ; s > t/2−M + 1).

Since {s > t/2−M + 1} ∈ Gtdt/2e we get

P(D ; s > t/2−M + 1|C) ≤ P(s > t/2−M + 1|C) ≤ P(s > t/2−M + 1) + ϕη(dt/2e).
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It follows that

ϕ(Y,η)(t) ≤ 2ϕη(dt/2e) + 2P(s > t/2−M + 1).

The first term goes geometrically fast to zero by assumption. For the second part we define

Xt = (ηt, ηt−1, . . . , ηt−M+1). Then (Xt)t∈Z is ϕ-mixing by Lemma 2.2.5. Therefore, by

Lemma 2.2.6, and the fact that P(Xt ∈ A) > 0, we have

P(s > t/2−M + 1) = P

dt/2e⋂
i=0

{Xt−i /∈ A}

→ 0

geometrically fast as t→∞. �

2.3 Application to heteroscedastic volatility modelling.

We now introduce a general nonlinear ARCH model that contains the model of Saı̈di

and Zakoian (2006) and illustrate how to apply our main results of Section 2.2. Let

u : R2 → [0,∞) be a nonnegative Borel measurable function that possibly depends on a

vector of parameters θ that lie in a parameter space Θ. The general model of interest is

given by

εt = σtηt,

σ2
t = ω + u(εt−1, σ

2
t−1; θ)1

{
ε2t−1 > kε2t−2

}
,

(2.4)

where ω and k are strictly positive. The generalisation compared to (2.1) is that we replace

the term αε2t−1 with a general updating function u. We discuss model (2.1) and other

examples in Section 2.3.1.

We start by analysing the dynamics concerning the time varying volatility. Given

that u is nonnegative we immediately see that any possible solution to (2.4) must satisfy

σ2
t ∈ I := [ω,∞). Assuming that the model is well specified, we get

σ2
t = ω + ũ(σ2

t−1, ηt−1; θ)1
{
σ2
t−1η

2
t−1 > kσ2

t−2η
2
t−2

}
, (2.5)
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where ũ(σ2
t−1, ηt−1; θ) = u(εt−1(σt−1, ηt−1), σ2

t−1; θ). Our analysis will focus on this

model, since any solution to (2.5) can be used to create a solution to (2.4). Note that

σ2
t depends both on σ2

t−1 and σ2
t−2. The random functions (φt)t∈Z associated with (2.5)

will therefore be defined on I2 and are given by

φt−1(x, y) = φ(x, y, ηt−1, ηt−2) = ω + ũ(x, ηt−1; θ)1
{
xη2

t−1 > kyη2
t−2

}
.

Unfortunately these are not in the framework of the SRE theory in Section 2.2, since

φ : I2 × R2 → I . Therefore we will look at the two dimensional model

(σ2
t , σ

2
t−1) = (φt−1(σ2

t−1, σ
2
t−2), σ2

t−1), (2.6)

which has state space S := I2. The random functions associated with (2.6) are given by

ψt−1(x, y) = ψ(x, y, ηt−1, ηt−2) = (φt−1(x, y), x).

Define φ(−1)
t (x, y) = y and φ(0)

t (x) = x, then the backward iterates for m ∈ N are given

by

φ
(m)
t (x, y) = φt

(
φ

(m−1)
t−1 (x, y), φ

(m−2)
t−2 (x, y)

)
,

ψ
(m)
t (x, y) =

(
φ

(m)
t (x, y), φ

(m−1)
t−1 (x, y)

)
.

We now state the weakest assumption for our nonlinear ARCH model that ensures we

satisfy Assumption A and therefore obtain the results from Theorems 2.2.1 and 2.2.4.

This result is derived in Theorem 2.3.2.

Assumption B.

B1. The sequence (ηt)t∈Z is SE.

B2. The following event has positive probability of occurring:

η2
t ≤ inf

x∈I

kxη2
t−1

ω + ũ(x, η2
t−1; θ)

and η2
t−1 ≤ inf

x∈I

kxη2
t−2

ω + ũ(x, η2
t−2; θ)

. (2.7)
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Assumption B is very general, but quite complex and thus hard to interpret. It is

a restriction on the joint probability law of (ηt, ηt−1, ηt−2) that confines ηt and ηt−1 with

positive probability to an area described by the functions in (2.7). This area can be abstract

and depends on the parameters k and θ. In what follows we derive a condition that is

easier to verify than Assumption B2 by only focussing on this area close to the origin.

Note that if ηt and ηt−1 given ηt−2 can be arbitrarily small with positive probability, then

Assumption B2 is satisfied if the infima are nonzero. To that end we define the function

g(η; θ) := sup
x∈I

ũ(x, η; θ)

x
.

Assumption C.

C1. For all η ∈ R and θ ∈ Θ we have g(η; θ) <∞.

C2. The sequence (ηt)t∈Z is SE.

C3. There exist a N ∈ N such that P(|ηt| < 1/n; |ηt−1| < 1/m | ηt−2) > 0 almost

surely for all n,m ≥ N . Also the probability that ηt = 0 is zero.

Assumption C1 is an assumption on the updating function u of model (2.4). The con-

dition is of a similar nature as those found in theory on geometric ergodicity of nonlinear

time series, see Cline and Pu (1999). It implies that the function ũ as a function of x is

bounded on any closed interval, and asymptotically as x → ∞ is bounded by a linear

function. These two facts ensure that the infima in (2.7) are nonzero.

The other conditions are purely on the distribution of (ηt)t∈Z. Assumption C3 entails

that ηt and ηt−1 have positive probability of being arbitrarily small, independent of the

value of ηt−2. An example on how Assumption C3 can be derived is if (ηt)t∈Z is obtained

as a SE solution from another model. For example, suppose that (ηt)t∈Z is given by a SE

solution to an autoregressive process of order one

ηt+1 = βηt + ζt.

Then a sufficient condition would be that (ζt)t∈Z is iid, that ζt is absolutely continuous

with respect to the Lebesque measure on R and that ζt has a strictly positive probability
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density function. Note that these conditions imply that any set in B ∈ B(R×R×R) has

P((ηt, ηt−1, ηt−2) ∈ B) > 0, so in particular Assumption C3 is implied.

If we can assume that the sequence (ηt)t∈Z is independent, then Assumption C sim-

plifies as follows:

Assumption D.

D1. For all η ∈ R and θ ∈ Θ we have g(η; θ) <∞.

D2. The sequence (ηt)t∈Z is iid.

D3. There exist a N ∈ N such that P(|ηt| < 1/n) > 0 for all n ≥ N . Also the

probability that ηt = 0 is zero.

Assumption D3 implies Assumption C3 if (ηt)t∈Z is iid and describes that ηt being

arbitrarily small has positive probability. This, for example, is implied if ηt is absolutely

continuous with respect to the Lebesque measure on R and the probability density func-

tion of ηt is strictly positive on an open interval around zero. Common distributions such

as the normal and student-t distribution satisfy this condition.

Lemma 2.3.1. Assumption C implies Assumption B.

PROOF. We need to check whether Assumption B2 is satisfied. Assumption C1 ensures

that the random variable

inf
x∈I

kxη2
t−1

ω + ũ(x, η2
t−1; θ)

is equal to zero if and only if ηt−1 = 0, since

inf
x∈I

kxη2
t−1

ω + ũ(x, η2
t−1; θ)

≥ inf
x∈I

kxη2
t−1

ω + g(ηt−1; θ)x
=

kη2
t−1

1 + g(ηt−1; θ)
.

Assumption C3 therefore implies that kη2
t−1/(1 + g(ηt−1; θ)) is nonzero with probability

one. Therefore, the probability that

η2
t ≤

kη2
t−1

1 + g(ηt−1; θ)
and η2

t−1 ≤
kη2

t−2

1 + g(ηt−2; θ)

20



2.3. APPLICATION TO HETEROSCEDASTIC VOLATILITY MODELLING.

is greater than zero. This follows, since the infima are nonzero, due to the fact that ηt and

ηt−1 can be arbitrarily small with positive probability so in particular, they have positive

probability to be smaller than these upper bounds. �

Theorem 2.3.2. If Assumption B holds, then there exists a solution ((εt, σ
2
t ))t∈Z to (2.4)

given by

σ2
t+1 = lim

m→∞
φ

(m)
t (x, y),

εt+1 =

√
lim
m→∞

φ
(m)
t (x, y)ηt+1.

(2.8)

This solution is stationary ergodic, unique and any partial solution converges to it at any

rate. Moreover, if additionally (ηt)t∈Z is ϕ-mixing with geometric rate, then ((εt, σ
2
t ))t∈Z

is ϕ-mixing with geometric rate.

PROOF. We will start by verifying that assumptions A are all satisfied, so that Theorem

2.2.1 implies that

(
lim
m→∞

ψ
(m)
t (x, y)

)
t∈Z

is a SE and unique solution to (2.6) such that all partial solutions converge to it. Assump-

tion A1 is satisfied by Borel-measurability of u. Assumption A2 requires the sequence

((ηt, ηt−1))t∈Z to be SE, which is implied by B1 and Lemma 2.2.2. Finally, we will show

that (2.7) implies that ψ(3)
t (x, y) = (ω, ω) for all (x, y) ∈ S and therefore implies As-

sumption A3. Note that

φ
(2)
t (x, y) = φt(φt−1(x, y), x) = ω + ũ(φt−1(x, y), ηt; θ)1

{
φt−1(x, y)η2

t > kxη2
t−1

}
,

so that φ(2)
t (x, y) = ω for all (x, y) ∈ S iff η2

t ≤
kxη2t−1

φt−1(x,y)
for all (x, y) ∈ S, which is

implied by

η2
t ≤ inf

x∈I

kxη2
t−1

ω + ũ(x, η2
t−1; θ)

.
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The first part of the proof is concluded by noting that

ψ
(3)
t (x, y) = (φ2

t (φt−2(x, y), x), φ2
t−1(x, y)) = (φ2

t (x̃, ỹ), φ2
t−1(x, y)).

Next, a unique and SE solution to (2.6) to which all partial solutions converge to

implies the existence of a solution to (2.5) with the same properties, by projecting on the

first coordinate. The found solution is given by

lim
m→∞

φ
(m)
t (x, y),

which is a measurable function of (ηt−1, ηt−2, . . .). Therefore εt = σtηt is a measurable

function of (ηt, ηt−1, . . .) and thus (2.8) is a SE solution to (2.4) by Lemma 2.2.2. Unique-

ness and convergence of partial solutions transfer directly from those properties for (2.5).

Finally, suppose (ηt)t∈Z is ϕ-mixing with geometric rate. Then ((ηt, ηt−1))t∈Z is ϕ-

mixing with geometric rate by Lemma 2.2.5 and thus

(
lim
m→∞

φ
(m)
t (x, y), ηt+1

)
t∈Z

is ϕ-mixing with geometric rate by applying Theorem 2.2.4 and Lemma 2.2.5 again. Ap-

plying Lemma 2.2.5 once more shows that (2.8) is ϕ-mixing with geometric rate. �

2.3.1 Examples

This section discusses a couple of specifications of the updating function u in model

(2.4). We assume that the sequence (ηt)t∈Z is ϕ-mixing at a geometric rate and satisfies

the distributional conditions of either Assumption C or Assumption D. We then display

how quickly our theory can be applied by checking whether Assumption C1/D1 holds for

these examples.

Example 1 (Saı̈di and Zakoian (2006)). First, we consider model (2.1). We repeat it here
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for readability.

εt = σtηt,

σ2
t = ω + αε2t−11

{
ε2t−1 > kε2t−2

}
,

where α is nonnegative. We have u(εt−1, σ
2
t−1;α) = αε2t−1, which is a measurable and

nonnegative function. Moreover, the function g(ηt;α) = α < ∞, so Assumption C1

respective D1 is immediately satisfied. Therefore there exists a strictly stationary and

ϕ-mixing at geometric rate solution to which all partial solutions converge almost surely.

Saı̈di and Zakoian (2006) assume that (ηt)t∈Z is iid. They then add the assumptions that ηt

is absolutely continuous with respect to the Lebesque measure on R and ηt has a strictly

positive probability density function. Note that this assumption is stronger than our As-

sumption D3. Finally, Saı̈di and Zakoian (2006) assume that Eηt = 0 and Eη2
t = 1, while

we don’t have any moment conditions at all.

Example 2 (Asymmetric news impact curve). Second, we consider a model that allows

the update function to be asymmetric in εt−1 rather than using the quadratic update ε2t−1

considered above. In particular, we follow Engle and Ng (1993) in using the asymmetric

news impact curve u(εt−1, σ
2
t−1) = α(εt−1 + δσt−1)2 and obtain the following model

εt = σtηt,

σ2
t = ω + α(εt−1 + δσt−1)2

1
{
ε2t−1 > kε2t−2

}
,

where α is nonnegative and δ ∈ R. Notice how for δ < 0, negative returns εt have

greater impact on future volatility σ2
t+1 than positive returns of the same magnitude, thus

capturing the empirical regularity known as the leverage effect. In this example we have

ũ(x, ηt;α) = αx(ηt + δ)2 and thus g(ηt;α) = α(ηt + δ)2 < ∞. Therefore, Assump-

tion C1/D1 is satisfied again and thus there exists a strictly stationary and ϕ-mixing at

geometric rate solution to which all partial solutions converge almost surely.

Example 3 (Robust volatility update). Finally, we consider a robust nonlinear ARCH

model by adopting an update function that is bounded in εt−1 rather than quadratic. In

particular, we study a model which embodies the news impact curve of the student-t

score volatility model introduced in Creal et al. (2011, 2013) and the beta-t EGARCH
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model proposed by Harvey (2013),

εt = σtηt, ηt ∼ t(λ)

σ2
t = ω + α

ε2t−1

1 + λ−1ε2t−1

1
{
ε2t−1 > kε2t−2

}
,

where α and λ are nonnegative. Notice that the innovations ηt are allowed to be fat

tailed. In particular, they belong to the family of student’s-t distributed random variables

with λ degrees of freedom. The updating function of this model becomes more robust

(with a lower upper bound) as λ → 0 so that the innovations ηt become fatter tailed and

outliers become more frequent. In contrast, as we approach the Gaussian case by letting

λ → ∞, then the updating function reverts back to that of the nonlinear ARCH model

considered in Saı̈di and Zakoian (2006). We now have ũ(x, ηt;α, λ) = α
xη2t

1+xη2t /λ
≤ αλ,

thus g(ηt;α, λ) ≤ αλ/ω < ∞ and Assumption C1/D1 is satisfied again. Hence, there

exists a strictly stationary and ϕ-mixing at geometric rate solution to which all partial

solutions converge almost surely.

2.3.2 Moments

Moment conditions for model (2.4) can be obtained by showing that the moments of the

backward iterates have a converging subsequence. To state our result we define

h(η; θ) = lim sup
x→∞

ũ(x, η; θ)

x
.

Theorem 2.3.3. Let Assumption D hold. Let p ≥ 1 and Θ̃ ⊆ Θ be such that E|ηt|2p <∞

and E g(ηt; θ)
p <∞ and

E
(
h(ηt; θ)h(ηt−1; θ)1

{
η2
t >

kη2
t−1

h(ηt−1; θ)

})p
< 1 (2.9)

for all θ ∈ Θ̃. Then the unique solution to (2.8) has finite absolute 2p’th moment, that is

E|εt|2p <∞ and Eσ2p
t <∞.

Theorem 2.3.3 is a generalisation of Theorem 3.3 in Saı̈di and Zakoian (2006), their

assumption to ensure moments in model (2.1) follows as a specific case from our result.
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The expectation in condition (2.9) can be hard to calculate, because of the indicator func-

tion.

Corollary 2.3.4. Condition (2.9) is implied by

Eh(ηt; θ)
p < 1. (2.10)

PROOF. This follows directly from Assumption D2 and the fact that the indicator function

is bounded by one. �

Condition (2.10) is much easier to calculate, but sacrifices flexibility by ignoring the

indicator function. Saı̈di and Zakoian (2006) show that (2.9) delivers more flexible bounds

for model (2.1) than (2.10) when ηt ∼ N(0, 1). We will discuss the examples of Section

2.3.1 to illustrate how both conditions can be useful.

PROOF OF THEOREM 2.3.3. By Assumption D2 we have E|εt|2p = E|ηt|2pEσ2p
t , so

we only have to show Eσ2p
t <∞. We know by theorem 2.3.2 that

σ2
t = lim

m→∞
φ

(m)
t (x, y),

so by continuity of the norm and Fatou’s lemma we have Eσ2p
t <∞ if

lim inf
m→∞

E
∣∣∣φ(m)
t (x, y)

∣∣∣p <∞. (2.11)

We will prove inequality (2.11). To ease notation we will write φmt = φ
(m)
t (x, y) and

suppress the dependence of the functions g and h on θ. We have

φmt = ω + ũ
(
φm−1
t−1 , ηt−1

)
1
{
φm−1
t−1 η

2
t−1 > kφm−2

t−2 η
2
t−2

}
≤ ω + g(ηt−1)φm−1

t−1

≤ ω + g(ηt−1)(ω + g(ηt−2)φm−2
t−2 )

Let n ∈ N be any integer. We separate the problem into three scenarios. Suppose φm−1
t−1 ≤
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n, then φmt is bounded by

ω + g(ηt−1)n. (2.12)

If φm−2
t−2 ≤ n, then φmt is bounded by

ω + g(ηt−1)(ω + g(ηt−2)n). (2.13)

Finally, suppose φm−1
t−1 , φ

m−2
t−2 ≥ n. Define

hn(η) = sup
x≥n

ũ(x, η; θ)

x
.

Then, for n ≥ ω, we have hn(η) ≤ g(η) and thus

φmt ≤ ω + hn(ηt−1)φm−1
t−1 1

{
η2
t−1 >

kφm−2
t−2 η

2
t−2

ω + ũ
(
φm−2
t−2 , ηt−2

)}

≤ (1 + g(ηt−1))ω + hn(ηt−1)hn(ηt−2)φm−2
t−2 1

{
η2
t−1 >

kη2
t−2

ω/n+ hn(ηt−2)

}
. (2.14)

It follows that φmt is bounded by the sum of (2.12)-(2.14) and therefore by independence

of φm−2
t−2 with ηt−1 and ηt−2 we get by Minkowski’s inequality that

[E (φmt )p]
1
p ≤ C(n) + [Efn(ηt−1, ηt−2)p]

1
p
[
E
(
φm−2
t−2

)p] 1
p ,

where C(n) is a finite constant depending on n and

fn(ηt−1, ηt−2) = hn(ηt−1)hn(ηt−2)1

{
η2
t−1 >

kη2
t−2

ω/n+ hn(ηt−2)

}
.

A sufficient condition for (2.11) is to find an appropriate n ∈ N such that the expectation

Efn(ηt−1, ηt−2)p < 1. This happens for any choice of n that is large enough, as implied

by (2.9) and the dominated convergence theorem, because fn(ηt−1, ηt−2) is bounded by

g(ηt−1)g(ηt−2) for large enough n and as n→∞ it converges pointwise to
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h(ηt−1)h(ηt−2)1

{
η2
t−1 >

kη2
t−2

h(ηt−2)

}
.

�

Example 1 (Saı̈di and Zakoian (2006) continued). Using Theorem 2.3.3 we can follow

the approach of Saı̈di and Zakoian (2006) and find the same conditions for model (2.1)

that ensure E|εt|2p < ∞ and Eσ2p
t < ∞. We need µ2p := E|ηt|2p < ∞ and note that it

implies Eg(ηt;α)p = αpµ2p <∞. In this example condition (2.9) boils down to

E
(
α2η2

t η
2
t−11

{
η2
t >

k

α

})p
< 1. (2.15)

Using Hölder’s and Markov’s inequalities we get for any m ∈ N that the expectation in

(2.15) is bounded by

α2pµ2pE
(
η2
t

{
η2
t >

k

α

})p
≤ α2pµ2pµ

1/m
2pm P

(
η2m
t >

(
k

α

)m)m−1
m

≤ α2pµ2pµ
1/m
2pmµ

(m−1)/m
2m

(α
k

)m−1

Therefore a sufficient condition for (2.9) is

α < max
m∈N

(
km−1

µ2pµ
1/m
2pmµ

(m−1)/m
2m

)1/(2p+m−1)

.

Example 2 (Asymmetric news impact curve continued). The model with leverage effects

requires again µ2p < ∞, which implies Eg(ηt;α)p = αpE(ηt + δ)2p ≤ 22p−1αp(µ2p +

|δ|2p) < ∞. This model provides an example where the expectation in (2.9) is hard to

calculate. The condition here leads to

E
(
α2(ηt + δ)2(ηt−1 + δ)2

1

{
η2
t >

kη2
t−1

α(ηt−1 + δ)2

})p
< 1,

but we cannot easily use the Markov inequality to bound the indicator function, since this

would lead to moments of the reciprocal of ηt. Instead we use (2.10) and get the sufficient
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condition α < [E(ηt + δ)2p]
−1/p to obtain E|εt|2p <∞ and Eσ2p

t <∞.

Example 3 (Robust volatility update continued). The robust model has a bounded updat-

ing function for the volatility, so therefore we immediately know that µ2p <∞ is the only

condition we need E|εt|2p < ∞ and Eσ2p
t < ∞. This result also follows from Theorem

2.3.3, since g(η;α, λ) ≤ αλ and h(η;α, λ) = 0 for all η ∈ R.

2.4 Conclusion

This chapter has introduced a new set of conditions that ensure the existence of a unique

stationary, ergodic and ϕ-mixing solution for time series models. Moreover, sample paths

are guaranteed to converge to this solution over time. The assumptions are different from

existing conditions as they do not impose Lipschitz, bounded growth or drift restrictions.

Instead we require that the time series contains resetting dynamics, where a reset implies

that the model has a positive probability to update to a value that does not depend on the

past. These dynamics are present in time series with sudden changes, such as stock prices

with financial bubbles. We have demonstrated the value of our results and illustrated how

to apply them by examining a generalisation of the nonlinear ARCH model studied in

Saı̈di and Zakoian (2006).
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Chapter 3

A Time-Varying Parameter Model for

Local Explosions

3.1 Introduction

Many financial and economic time series display phases of locally explosive behaviour

that is followed by a burst or sharp mean-reverting dynamics. This stochastic behaviour

is especially prevalent in financial asset prices, stock indices and exchange rates. The lit-

erature on rational expectations models for asset pricing typically describe the asset price

process as the sum of a fundamental value process and aforementioned locally explosive

process. The second process is then defined as a speculative bubble, see for instance Blan-

chard and Watson (1982), West (1987), Diba and Grossman (1988) and more. The bubble

is considered to be an explosive nonstationary process and its presence is tested via unit

root and cointegration tests. However, Evans (1991) noted that periodically collapsing

bubbles can cause the bubble paths to look more like a stationary process, making it diffi-

cult for regular tests to detect the existence of bubbles. Using recursive testing techniques,

evidence for the existence of a speculative bubble has been found by for example Phillips

et al. (2011) and Homm and Breitung (2012) in the Nasdaq real price index and Phillips

and Yu (2011) in the U.S. house price index, the price of crude oil and the spread between

Baa and Aaa bond rates.

A different approach has been proposed by Gouriéroux and Zakoı̈an (2013) who de-

scribe speculative bubble dynamics using a noncausal autoregressive process of order
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one with Cauchy innovations. This specification is able to model speculative bubbles

as in reverse time the model is a causal autoregressive process of order one with a fat

tailed innovation distribution, and thus produces large spikes followed by mean reversion.

From the calendar time perspective such dynamics are observed as exponential explosions

followed by sudden collapse. The noncausal approach to bubble modelling has been ex-

tended to stable distributed innovations in Gouriéroux and Zakoı̈an (2017) and to higher

order mixed causal and noncausal linear models in Fries and Zakoı̈an (2017). A difference

with the rational expectations approach is that noncausal models work within a stationary

framework, which allows for the derivation of many theoretical results. Gouriéroux and

Zakoı̈an (2013) show that the sample autocorrelation converges to a number smaller than

one in absolute value. It demonstrates that a unit root test generally rejects the unit root

hypothesis and thus will be unable to identify the presence of speculative bubbles. More-

over, they indicate the possibility of calculating and predicting future bubble behaviour

and show the existence of moments. A major disadvantage of the noncausal approach is

its computational challenge. Distinguishing causal and noncausal components is based

on extreme value clustering, see the discussions in Fries and Zakoı̈an (2017). The predic-

tion of these components depends on computational methods such as Metropolis-Hasting

or sampling/importance resampling, see Gourieroux and Jasiak (2016). In addition, the

models are unable to distinguish the potential speculative bubble from the fundamental

value. The noncausal models allow for only one generic type of bubble baseline path for

a given set of parameters.

We introduce an observation driven model with time varying parameters designed as

a new approach to modelling multiple speculative bubbles. As in the literature on rational

expectations, our proposed model splits the asset price into a sum of two processes. The

first process represents the fundamental value and can be modelled by any contracting

or mean reverting process, while the second process represents the bubble effect charac-

terised by the typical exponential increase followed by a burst. We provide various bubble

burst conditions and discuss their respective merits and shortcomings. The advantage of

using such a specification is that we can filter data into its fundamental value and a po-

tential speculative bubble. Furthermore, the sum of the two processes is very flexible

due to the joint dynamics of the individual components and can describe various baseline
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paths for the same set of parameters. Finally, the model has a conventional observation

driven specification, which implies that parameter estimation can rely on the method of

maximum likelihood where the likelihood function is obtained via the prediction error de-

composition. It further implies that point predictions, confidence intervals, bubble burst

probabilities, bubble emergence probabilities, expected bubble life times, and more, can

be derived straightforwardly.

Similar to the noncausal literature our model describes locally explosive behaviour in

a strictly stationary framework. Due to earlier work in Blasques and Nientker (2017) we

can immediately show that the model admits a stationary ergodic and φ-mixing solution

under very mild conditions. Additionally, in this paper, we prove that the model as a

filter also admits a stationary ergodic and mixing solution and that any initiated sample

path converges to this solution. The derivations of these results are nonstandard because

the filter contains a discontinuity, rendering classical contraction results such as those in

Bougerol (1993) infeasible. The results are then used to obtain consistency and asymp-

totic normality for our maximum likelihood estimator on the parameters that enter contin-

uously in the likelihood. In a simulation exercise we show that other parameters are well

behaved.

The rest of the paper is structured as follows. Section 3.1 introduces our modelling

framework for local explosions. In Section 4.3 we study probabilistic and statistical prop-

erties of the model. Evidence from simulations and a real time series are provided in

Section 3.4. Concluding remarks are in Section 3.5. The proofs are presented in the

Appendix.

3.2 Model for Local Explosions

Our model decomposes the asset price Xt into a sum of three elements

Xt = µt + bt + εt, (3.1)

where µt is the fundamental value of the asset price, bt is the value of a potential spec-

ulative bubble and εt is an error term. The error εt an element of an independent and
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identically normal distributed sequence

(εt)t∈Z ∼ NID(0, σ2), (3.2)

where σ is a strictly positive constant. The fundamental value µt is defined as the value

of the asset price if no speculative bubbles were to exist. The main focus of this paper is

on describing bubble dynamics. Hence we consider a basic observation driven updating

equation for the fundamental value, that is

µt = δ + βµt−1 + γ(Xt−1 − µt−1 − bt−1), (3.3)

where δ, β and γ are fixed unknown parameters. The dynamics for the fundamental

value are mean reverting if |β| < 1, but partially correct by a factor γ for the past error

εt−1 = (Xt−1−µt−1− bt−1). This updating equation can be interpreted as an observation

driven analogue of the parameter driven local level model in Chapter 2 of Durbin and

Koopman (2012) and can also be obtained when using a score updating rule for the mean

as in Creal et al. (2013). Many other dynamic processes for the fundamental value can also

be considered. The model specification (3.3) can be augmented with more lags of the µ

and ε processes, similar to a stationary autoregressive moving average (ARMA) process.

Also, we can adopt a completely exogenous stationary process for µt which is potentially

based on economic or financial reasoning. We will maintain the stationary framework

explored in the non-causal literature. In practice, this means that one would have to add

a nonstationary component when the objective is to model bubles in non-stationary time-

series, such as asset prices which are typically nonstationary. Alternatively, one could

allow the fundamental value to be non-stationary, such as a random walk. This is however

outside the scope of this paper.

The speculative bubble process is nonnegative and defined according to the following

updating equation

bt = (ω + αbt−1)1{survival condition}. (3.4)

To ensure nonnegativity of bt we impose ω > 0, while α can be any nonnegative num-
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ber, but typically is thought of as a parameter that is greater than one. This implies that

the bubble process satisfies an exponential increase, as is commonly observed in locally

explosive time series. The bubble bt then diverges to infinity, if not for the indicator

function, which forces the bubble to collapse down to zero if the survival condition is no

longer satisfied. As with the fundamental value process, many options are available for

the survival condition. Let Ft = (Xt, µt, bt) be the information obtained at time t. Then a

general survival condition that encompasses a variety of useful model choices is given by

thresholded functions

1{g(Ft−1) < 0}, (3.5)

where g is some real-valued function, which we will call the survival function. A few

example choices for the survival function are given by

E1 g(Ft−1) = Xt−1 − c, for some c ∈ R.

E2 g(Ft−1) = Xt−1 − µt−1 − c, for some c ≥ 0.

E3 g(Ft−1) = bt−1 − kXt−1, for some k ∈ [0, 1].

E4 g(Ft−1) = bt−1 − k(µt − c), for some k ≥ 0 and c ∈ R.

The simplest survival function E1 lets the bubble grow until the asset price reaches a fixed

level c. This allows for various bubble sizes bt, as Xt−1 also depends on the fundamental

value µt−1 and the shock process εt−1, but does describe time series in which the asset

price always drops from approximately the same critical level. To allow for varying levels

one can use a survival function such as E2. This function allows the bubble to grow

as long as the difference between the asset price and the fundamental value is not too

large, which leaves flexibility for the actual critical level. Examples E1-E2 have less

control for the emergence rate of bubbles. If a bubble just collapsed, then Xt−1 is equal

to its fundamental value in expectation, which has dynamics that are potentially likely

to immediately initiate another bubble. In example E2 for instance, if bubbles are very

large, then cwill be relatively large with respect to the dynamics of the fundamental value.

When the bubble collapses at time t− 1, then g(Ft−1) = εt−1− c, which means that there

is a very high probability of a new bubble being created.
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To gain more control of bubble emergence dynamics one can use more involved sur-

vival functions such as example E3. Here a bubble collapses if it makes out more than a

fraction k of the total asset price. This allows for various bubble sizes and critical levels

of the asset price as Xt−1 depends on the fundamental value and the shock process. In

fact, a higher fundamental value allows for larger bubbles, a result that can be argued to be

appealing as a high fundamental price can be one of the driving reasons for the existence

of the bubble. Example E3 can control for the emergence of bubbles, asXt−1 < 0 implies

that the break condition is not satisfied for any possible value of bt−1 and thus no bubble

is created. A period of negative asset value thus ensures no bubble is created during that

time, hence E3 can be used well to describe time series which contain explosive and non-

explosive windows. Finally, example E4 captures the same effects as E3, but elaborates

on the connection between the fundamental value and the bubble process. The bubble size

and collapse and emergence times are now all directly related to the fundamental value.

If the fundamental value is below the threshold c, then no bubbles are created. If the fun-

damental value goes above c, then a bubble is created which grows until its size is larger

than k times the difference between the fundamental value and c. There are two general

driving forces that cause the bubble to burst. Firstly, the fundamental value process can

stay above c for an extended period of time, but as it is mean reverting while the bubble

is exponentially increasing, the bubble process grows much faster and thus we eventually

observe that bt−1 ≥ k(µt − c). Secondly, the fundamental value can fall quickly below c

again, which immediately makes the bubble collapse. Combinations between these two

collapse reasons are also possible, allowing for a wide variety of bubble sizes and overall

asset price dynamics.

3.2.1 Bubble variety

The bubble process described in (3.4) might appear to be rather restricted at first sight, as

conditional on the current value of the bubble the updating equation allows for only two

possible values, all of which are within a countable space. However, the joint dynamics

between the fundamental value and the bubble process can cause the asset price to be very

flexible in describing various bubble sizes, shapes and frequencies. This is especially true

for examples E3 and E4, which we demonstrate in Figure 3.2.1 by examining some of the
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possible impulse response functions (IRFs) for the model described in equations (3.1)-

(3.5) with survival condition E4. Figure 3.2.1a illustrates how a small impulse that does

Figure 3.2.1: Several impulse response functions for the bubble model as described in equations
(3.1)-(3.5) with survival condition E4.
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(d) A flat bubble that spends some time near its
peak before collapsing.

not push the fundamental process above the threshold c creates no speculative bubble. The

resulting dynamics in the asset price are therefore just the mean reverting ones from the

fundamental value process. In Figure 3.2.1b we have increased the size of the impulse,

which results in a typical unique bubble characterised by its exponential increase followed

by a sudden collapse. The collapse is caused by the fundamental process reverting back

to its mean lower than c. If we further increase the size of the impulse as in Figure 3.2.1c,

then we obtain a similar initial scenario, but now the bubble collapses even though the

fundamental value is still above the threshold, because its size is larger than k(µt−1 −

c). This results in another smaller bubble immediately created once the first bubble has

collapsed. Finally, Figure 3.2.1d illustrates the effect of an impulse size that causes the

mean reverting fundamental process dynamics to approximately cancel out the explosive

bubble dynamics. The resulting joint dynamics for the asset price show a bubble that

spends some time at its peak level before collapsing.

The different possible joint dynamics in the asset price as illustrated in Figure 3.2.1
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are often encountered in financial time series. Figure 3.2.2 exhibits some time series for

which evidence for the existence of a speculative bubble has been found. The bubble

shapes in each time series are remarkably different. Figure 3.2.2a plots the monthly Nas-

Figure 3.2.2: Several time series with evidence for the existence of a speculative bubble. Panel a is
the monthly Nasdaq real price from January 1973 to May 2005, Panel b is the daily Bitcoin/USD
exchange rate from February 20, 2013 to July 18, 2013 and Panel c is the daily spread between
US Baa bond rates and Aaa bond rates from January 3, 2006 to July 2, 2009.
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daq real price from January 1973 to May 2005, studied in Phillips et al. (2011). This

time series contains a single bubble where the exponential increase is followed by an

immediate burst and no new explosive behaviour, see the similarity with the impulse re-

sponse function (IRF) in Figure 3.2.1b. Figure 3.2.2b depicts the daily Bitcoin/US dollar

exchange rate from February 20 to July 18 in 2013, studied in Hencic and Gouriéroux

(2015). This time series contains a classic bubble, which collapses on April 10. However,

different to Figure 3.2.2a, it is followed immediately by a new smaller exponential in-

crease and downwards burst, analogous to the IRF of Figure 3.2.1c. Figure 3.2.2c shows

the daily spread between US Baa bond rates and Aaa bond rates from January 3, 2006 to

July 2, 2009, studied in Phillips and Yu (2011). Here we observe a speculative bubble that

increases exponentially, but then spends some time around its peak before collapsing, as

in the IRF of Figure 3.2.1d. All time series contain windows where no speculative bubble

is apparent, as in the IRF of Figure 3.2.1a.
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3.3 Probabilistic and statistical analysis

In this section we study the probabilistic properties of our model as defined in equations

(3.1)–(3.5). The bubble model contains several irregular components making the results

in this section nonstandard. Firstly, the parameter α is allowed to be greater than one,

which means that the bubble model is locally explosive on its sample space. Secondly,

the updating equation for the bubble process (3.4) contains a discontinuity. These as-

pects imply that typical stability properties necessary for almost everywhere contraction

conditions or smoothness assumptions do not hold, which means that it is not possible

to employ standard stability theory results as developed in Bougerol (1993) or Meyn and

Tweedie (1993). Instead we rely on previous work in Blasques and Nientker (2017) that

provides stability results for resetting dynamic systems. Such a system is defined by an

updating function that sometimes resets to a fixed, possibly random, value regardless of

the past. These dynamics are present in the bubble process when the bubble collapses

back to zero.

We split the parameter vector in two sub-vectors (θ, λ) which belong to the parameter

space Θ × Λ. Here θ contains all the parameters that enter continuously in (µt, bt) and

λ contains the remaining parameters. Among the parameters (σ2, δ, β, γ, ω, α), it is clear

that σ2 is always an element of θ, while the remaining parameters may be elements of

θ or λ depending on the chosen survival function g. If the survival function depends on

the bubble process, then (α, ω) belong to λ and if g is nonconstant in the fundamental

value process, then (δ, β, γ) belong to λ. We examine the examples from Section 3.2 as

an illustration.

E1 g(Ft−1) = Xt−1 − c, then θ = (σ2, δ, β, γ, ω, α) and λ = c.

E2 g(Ft−1) = Xt−1 − µt−1 − c, then θ = (σ2, ω, α) and λ = (δ, β, γ, c).

E3 g(Ft−1) = bt−1 − kXt−1, then θ = (σ2, δ, β, γ) and λ = (ω, α, k).

E4 g(Ft−1) = bt−1 − k(µt − c), then θ = σ2 and λ = (δ, β, γ, ω, α, k).

Deriving consistency and asymptotic normality for λ is generally difficult. Therefore we

approach the problem by deriving these results for θ conditionally on a calibrated value
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of λ. This means that we will work with functions f in the Banach space L∞(Θ,R), we

write ‖f‖Θ for the supremum norm. The parameter space Θ is assumed to be compact

throughout this section.

We show in Section 3.3.1 that the model admits stable solutions under lenient restric-

tions on the parameters and survival function. We then continue to analyse the model

as a filter in Section 3.3.2 and show that filter paths converge to a stable solution. We

derive the likelihood in Section 3.3.3 and provide consistency and asymptotic normality

for a maximum likelihood (ML) estimator in Section 3.3.4. All the proofs can be found

in Appendix 3.6.

3.3.1 The model as a data generating process

This section provides results that guarantee that our model generates (strictly) stationary

ergodic data with finite moments. Moreover, we show that partial solutions converge to

the stationary sequence. These results will be required later on to show consistency and

asymptotic normality for the ML estimator in a correctly specified model.

Data generated by our model partially adheres to very standard dynamics, as equation

(3.1) holds for such data and thus (3.3) simplifies to

µt = δ + βµt−1 + γεt−1. (3.6)

The fundamental value process therefore is an autoregressive process of order one with

Gaussian errors, a specification that is well studied and known to have stable solutions.

We need the following assumptions to ensure the stability results:

DGP 1. The parameter space satisfies |β| < 1.

DGP 2. Let b ≥ 0 and µ, ε ∈ R. There exists a set S ⊂ R × R of positive Lebesque

measure such that the survival function satisfies

g̃(ε, µ) := inf
b≥0

g(µ+ b+ ε, µ, b) ≥ 0 for all (ε, µ) ∈ S.

Assumption DGP 1 is standard in the literature on autoregressive processes. Condition

DGP 2 seems complicated but essentially requires that the bubble process always has
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positive probability to collapse next period, regardless of its current and past values. If this

were not the case, then there are scenarios in which the bubble is guaranteed to continue

growing, something that can be considered unnatural. Assumption DGP 2 is usually easy

to verify.

Lemma 3.3.1. Assumption DGP 2 holds if g̃ is a continuous and surjective function.

PROOF. The set [0,∞) contains an open subset, say O. Since g̃ is surjective g̃−1(O) is

nonempty and by continuity it is open. Any nonempty open subset in Euclidean space is

of positive Lebesque measure. �

We verify condition DGP 2 on our examples E1–E4 as an illustration. If our survival

function is given by E1 then g̃(ε, µ) = µ+ε−c, if our survival function is given by E2 then

g̃(ε, µ) = ε− c, if our survival function is given by E3 then g̃(ε, µ) = k(µ+ ε) as k ≤ 1

and finally if our survival function is given by E4 then g̃(ε, µ) = −k(δ + βµ + γε − c).

All of these functions are continuous and surjective and thus condition DGP 2 is satisfied

for all our examples.

Theorem 3.3.2. Suppose that assumptions DGP 1–2 hold. Then there exists a unique

causal stationary ergodic solution ((Xt, µt, bt))t∈Z to model (3.1)–(3.5). Moreover, any

other solution ((X̂t, µ̂t, b̂t))t∈N initialised at (X̂1, µ̂1, b̂1) almost surely converges expo-

nentially fast to the stationary ergodic one, that is

∥∥∥(µ1, b1)− (µ̂1, b̂1)
∥∥∥

Θ

eas→ 0 as t→∞.

Theorem 3.3.6 establishes the existence of a unique causal solution to our model for

each choice of θ that satisfies assumptions DGP 1–2. One can simulate an arbitrary close

approximation of this solution by using any initialisation of choice and discarding the first

portion of the time series.

We finalize this section by providing a result on the existence of moments for the

solution found in Theorem 3.3.2. Showing such existence is dependent on the chosen

survival function. We will use example E4 in our application, so we derive the result for

this survival function.
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Corollary 3.3.3. Suppose that assumptions DGP 1 holds and that the survival function is

given as in E4. Then the unique stationary ergodic solution has a uniform n′th moment

for all n ∈ N, i.e. E‖(Xt, µt, bt)‖nΘ <∞.

3.3.2 The model as a filter

This section focusses on the model as a filter for general data (Xt)t∈Z. Such a filter

will always have to be initialised at some values µ̂1 and b̂1, as the fundamental respec-

tive bubble processes are unobserved. We impose conditions that ensure that our filtered

model admits a unique stationary ergodic solution that is twice continuously differen-

tiable, has bounded moments and that any initialised process converges to. The first set

of conditions assume structure on the dependence between the (Xt). We write log+(x) =

max{0, log x} and F ts for the σ-algebra of (Xs, . . . , Xt) for any s ≤ t ∈ [−∞,∞].

FLT 1. The data sequence (Xt)t∈Z is stationary ergodic and has a finite log moment, that

is E log+ |Xt| <∞.

FLT 2. Each Xt is absolutely continuous with full support pdf. If A ∈ F−1
−∞ and B ∈ F∞0

are events of positive probability, then P(A and B) > 0.

FLT 3. The conditional distributions Xt | Xt−1, . . . , Xt−n are absolutely continuous and

of bounded density uniformly over n ∈ N and almost all possible past values with respect

to Lebesque measure.

Condition FLT 1 is standard and necessary, one cannot expect to obtain stationary

ergodic filter paths if the original data sequence is not so. A log moment is implied by

the existence of any regular moment by Jensen’s inequality. Assumption FLT 2 is less

common, but has an intuitive interpretation. It requires the sequence (Xt)t≥0 to be non

exclusive, that is, conditional on the past some future events are more likely than others,

however, anything that was possible unconditionally can still happen. Assumption FLT 3

is a technical one that is satisfied for most reasonable distributions. We realise conditions

FLT 2 and FLT 3 are unusual in the literature. We provide the following result to illustrate

that many stochastic processes satisfy these conditions.
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Proposition 3.3.4. Suppose (Xt)t∈Z is a real valued stationary ergodic solution of a

Markov chain Xt = f(Xt−1, ζt). If f(x, ·) is a continuously differentiable function for

all x ∈ R with derivative bounded away from zero for almost all x ∈ R with respect to

Lebesque measure, and (ζt)t∈Z is a sequence of independent, identically distributed and

absolutely continuous random variables such that f(x, ζt) has full support for all x ∈ R.

Then conditions FLT 2 and FLT 3 are satisfied.

Proposition 3.3.4 implies that typical processes such as general AR(1) given by Xt =

h(Xt−1) + εt, or multiplicative specifications of the type Xt = h(Xt−1)εt usually satisfy

conditions FLT 2 and FLT 3. The proposition can also be extended to multivariate pro-

cesses where the data is one of the entries in the vector. This implies processes such as

ARMA or GARCH satisfy our conditions.

As mentioned before, the dynamics of our model rely heavily on the survival function

chosen, specifically whether g is nonconstant in any of its arguments. We provide the

desired results for the most complex case in which g is nonconstant in any of its variables.

We then need the following additional parameter restrictions.

FLT 4. The function g is Lipschitz with derivative bounded away from zero almost every-

where, it is monotone in its first argument, decreasing and continuous in its second argu-

ment and increasing in its third argument. Moreover, the probability P(g(Xt, µ, 0) ≥ 0)

is positive for all µ ∈ R and the inverse of g in its third argument is L-Lipschitz.

FLT 5. The parameters satisfy r := |β − γ| < 1 and the polynomial p(x) = 1 − rx +

γαLx2 has roots outside of the unit circle.

Assumption 4 contains quite some restrictions of the survival function. It can be easily

checked however that these all hold for example E4.

Theorem 3.3.5. Suppose that assumptions FLT 1–4 hold. Then there exists a unique

causal stationary ergodic solution ((µ∗t , b
∗
t ))t∈Z to model (3.3)–(3.5) that is twice con-

tinuously differentiable over Θ. Moreover, any other solution ((µ̂t, b̂t))t∈N initialised at

(µ̂1, b̂1) almost surely converges exponentially fast to the stationary ergodic one, that is,

∥∥∥(µ∗t , b
∗
t )− (µ̂t, b̂t)

∥∥∥
Θ

eas→ 0 as t→∞.
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Finally, if Xt has an n’th moment for some n ∈ N, then (µ∗t , b
∗
t ) has an n’th moment too.

3.3.3 The likelihood

As mentioned in the beginning of Section 4.3 we derive our asymptotic results for θ

conditionally on a calibrated value of λ. The likelihood evaluated at some θ ∈ Θ for

a sequence (X1, . . . , XT ) is the joint density implied by (3.1)–(3.5). The fundamental

value and bubble processes are unobserved, so we choose initialised values µ̂1 and b̂1

which deliver filtered sequences (µ̂t(θ, λ))Tt=2 and (b̂t(θ, λ))Tt=2 according to (3.3)–(3.5).

It follows that

Xt|X1, . . . , Xt−1 = Xt|µ̂t(θ, λ), b̂t(θ, λ) ∼ N(µ̂t(θ, λ) + b̂t(θ, λ), σ2)

and thus prediction error decomposition delivers the average log likelihood as a function

Θ→ R given by

L̂T (θ) ∝ 1

T

T∑
t=2

`(Xt, µ̂t(θ, λ), b̂t(θ, λ), σ2),

`(Xt, µ̂t(θ, λ), b̂t(θ, λ), σ2) := −1

2
log(2πσ2)− 1

2σ2
(Xt − µ̂t(θ, λ)− b̂t(θ, λ))2.

From here on out we will omit mentioning that the plug in processes depend on θ and λ

to keep notation clear.

3.3.4 Asymptotic results

Consistency

The ML estimator of θ is defined as

θ̂T = arg max
θ∈Θ

L̂T (θ).

We need the following conditions to obtain consistency.

CS 1. (Xt)t∈Z is stationary and ergodic with bounded second moment: E|Xt|2 <∞.
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CS 2. The filter vector ((µ̂t, b̂t))t∈N is invertible and converges to a limit process ((µ∗t , b
∗
t ))t∈Z

uniformly over Θ with two uniform bounded moments. That is,

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

eas→ 0 as t→∞ and E ‖(µ∗t , b∗t )‖
2
Θ <∞,

Moreover, the joint process ((Xt, µ
∗
t , b
∗
t ))t∈Z is strictly stationary and ergodic.

CS 3. There exists a unique maximizer θ0 of the limit log likelihood, that is, for every

θ ∈ Θ that is unequal to θ0 we have

E`(Xt, µ
∗
t (θ, λ), b∗t (θ, λ), σ2) < E`(Xt, µ

∗
t (θ0, λ), b∗t (θ0, λ), σ2

0).

The assumptions CS 1–3 are typical conditions used in the theory of M -estimators.

Assumptions CS 1 and CS 2 assume stochastic properties of our model that ensure that a

law of large numbers can be applied. Note that they are both implied by assumption FLT

1 – FLT 5 and Theorem 3.3.5. Assumption CS 3 ensures that the limit log likelihood is

maximised at a unique point θ0, given the fixed parameter λ. Note that the expectations

exist by the moment assumptions in CS 1–2. When the model is assumed to be well

specified and λ is fixed at its true value λ0, then it is often easy to show that this assumption

holds and that the parameter of interest θ0 is the true parameter, that is, the parameter that

corresponds to the data generating process for {Xt}t∈Z. If the model is misspecified,

or λ is set at some arbitrary value λ 6= λ0, then the uniqueness of the parameter of

interest θ0 is harder to establish.1 In this case, the limit parameter θ0 is a ‘pseudo-true

parameter’, i.e. a parameter that minimizes a Kullback-Leibler divergence between the

true conditional density of the data and the model-implied conditional density, see Section

2.3 of White (1994).

Theorem 3.3.6 (Consistency). If assumptions CS 1–3 hold, then θ̂T
as→ θ0.

Theorem 1 establishes the a.s. convergence of the ML estimator θ̂T to the pseudo-true

parameter θ0 which is the unique maximizer of the limit log likelihood or any given value

of λ ∈ Λ. In this sense, the θ0 provides the best Kullback-Leibler approximation to the
1When the uniqueness assumption fails, set consistency can be easily established, thus ensuring that the

ML estimator converges to the limit argmin set; see Lemma 4.2 in Pötscher and Prucha (1997) for standard
conditions that apply here.
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true unknown distribution of the data, for the given value of λ. Naturally, if the model

is correctly specified and λ is calibrated at its true value, then θ0 corresponds to the true

parameter.

Corollary 3.3.7. Suppose that the model is correctly specified and that λ is calibrated at

its true value. If the results of Theorem 3.3.2 can be applied for all θ ∈ Θ, and

E ‖(µt, bt)‖2
Θ <∞.

Then the ML estimator θ̂T converges a.s. to the true parameter θ0.

Asymptotic normality

In what follows, we establish the asymptotic normality of the ML estimator θ̂T as T →∞.

Theorem 3.3.8 focuses on the case of a well specified and correctly calibrated model, and

Theorem 3.3.9 obtains asymptotic normality for a misspecified or incorrectly calibrated

model where λ 6= λ0. We need the following standard assumptions.

AN 1. The conditions CS 1–3 hold and θ0 belongs to the interior of Θ.

AN 2. The limit process (µ∗t , b
∗
t ) is twice continuously differentiable on Θ for all t ∈ Z.

AN 3. {Xt}t∈Z has four bounded moments E|Xt|4 <∞.

AN 4. The Fisher information matrix is invertible.

The following assumption ensures that the filter derivatives converge almost surely

and exponentially fast to limit strictly stationary and ergodic sequences. The exponential

rate for the filter was established in Section 3.3.2. It is clear that the same argument

applies to the derivative processes {∂µ̂t
∂θ
} and {∂b̂t

∂θ
}. In particular, we have again that

{∂b̂t
∂θ
} converges at any rate since it is reset to zero in a finite number of steps with positive

probability, and {∂µ̂t
∂θ
} converges exponentially fast due to its autoregressive nature.

AN 5. The derivative processes are invertible at exponential rates and feature four bounded

moments, ∥∥∥(∇0:2µ̂t,∇0:2β̂t)− (∇0:2µt,∇0:2βt)
∥∥∥

Θ

eas→ 0 as t→∞ ,

and E
∥∥(∇0:2µt,∇0:2βt)

∥∥4

Θ
<∞.
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Theorem 3.3.8. (Asymptotic Normality: Correct specification) Let assumptions AN 1–5

hold. Suppose further that the model is well specified and that λ = λ0. Then

√
T (θ̂T − θ0)

d→ N(0, I−1(θ0)) as T →∞ ,

where I−1(θ0) denotes the inverse information matrix.

We need the following additional assumption to obtain asymptotic normality under a

misspecified model.

AN 6. {xt} is near epoch dependent of size−1 on a φ-mixing sequence of size−r/(r−1)

for some r > 2 .

Theorem 3.3.9. (Asymptotic Normality: Incorrect specification/calibration) Let assump-

tions AN 1–6 hold. Then

√
T (θ̂1

T − θ1
0)

d→ N(0,Σ(θ1
0, θ

2)) as T →∞ ,

where

Σ(θ1
0, θ

2) =
(
Eˆ̀′′

t (θ
1
0, θ

2)
)−1(Eˆ̀′

t(θ
1
0, θ

2)Eˆ̀′
t(θ

1
0, θ

2)>
)(
Eˆ̀′′

t (θ
1
0, θ

2)
)−1

.

3.4 Illustrations

In this section we test the descriptive capability of our model and illustrate the access-

ability and ease of further analysis after estimation. We will use our model with survival

function E4 and estimate it on a part of the Bitcoin/US dollar exchange rate. We realise

that the chosen survival function implies that most of our parameters belong to λ, the

vector of parameters that enter discontinuously into the likelihood. Therefore we add a

short simulation study in Section 3.4.1 in which we examine the distribution of our ML

estimator for a representative choice of parameters. Section 3.4.2 contains the estimation

results and further analysis.
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3.4.1 Simulation study

We examine the distribution of the ML estimator for a given parametrization, stated in

Table 3.4.1. This choice represents a medium amount of bubbles of size relative to the

σ δ β γ ω α k c
1.0 0.1 0.95 0.7 0.2 1.03 7 −0.1

Table 3.4.1: Parametrization used for simulation study.

fundamental value process. A typical simulation for the implied model can be found in

Figure 3.4.1. Note that there are windows of locally explosive behaviour, but also times

Figure 3.4.1: An example simulated path for the parametrization of the model described in Table
3.4.1.
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at which no bubbles seem to form. The size of the bubbles is substantially larger than that

of the fundamental value, but not so far as to render its value insignificant compared to

the magnitude of the bubble process.

We estimate the model parameters by maximising the likelihood over an area centered

around the true values. The likelihood however is discontinuous and nondifferentiable,

which means that gradient based optimizing algorithms cannot be applied. Instead we

implement a procedure based on the genetic algorithm in Matlab, which is inspired by

natural selection observed in biological evolution. The algorithm generates a population

of points and then successively selects a partially random subpopulation to be parents to

the next population. We use a total of fifty generations to get near to the optimal point

and then use that as a starting value for a gradient based optimizer to get quicker to the

maximiser. An important observation about our procedure is that the resulting optimizing

algorithm is stochastic. This implies that found parameter values cannot be reproduced,
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however, the algorithm works sufficiently well such that successive estimations on the

same data produce very similar results.

For the simulation we calculate one thousand estimate values, each of which is based

on a sample path of length one thousand. The resulting estimated densities for the ML

estimator are portrayed in Figure 3.4.2. Here we see that all densities, except the one

Figure 3.4.2: Estimated kernel densities for the ML estimator based on one thousand estimate
values, each of which is based on a sample path of length one thousand.
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for k, are close to symmetric with their peak at the true value. The estimator for k has

more inaccuracy than the others, because most bubbles in this parametrization collapse

due to the fundamental process dropping below the threshold c. A path of one thousand

observations contains approximately ten bubbles, so therefore there is relatively little data

to estimate k.
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3.4.2 The BTC/USD exchange rate

The data set that we use is equivalent to the one studied in Hencic and Gouriéroux (2015).

We take the detrended daily Bitcoin/US dollar exchange rate from February 20 to July 18

in 2013, given in Figure 3.4.3. There appears to be a big bubble that collapses on April

10, 2013. Moreover, it is potentially followed by a second smaller bubble. Afterwards it

tends to behave as a standard stable and mean reverting process.

Figure 3.4.3: Detrended daily Bitcoin/USD exchange rate, taken from Hencic and Gouriéroux
(2015).
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We estimate the model parameters as discussed in the simulation study. The results

are given in Table 3.4.2. The estimate of α is relatively large, which means that any

σ δ β γ ω α k c
2.05 −0.25 0.86 1.04 0.44 2.10 2.39 12.29

Table 3.4.2: Parametrization used for simulation study.

potential bubble is highly explosive. Moreover, the value of c implies that the potential

smaller second bubble is mostly identified as the fundamental value moving away from

its mean. These observations are substantiated when we look at the filtered time series in

Figure 3.4.4, note that these are also the in sample one step ahead predictions. Our model

describes only one significant bubble, which is preceded by an increase in the fundamental

value. It then collapses due to the k parameter restriction on bubble size. Afterwards the

fundamental value stays below the threshold c and hence the rest of the time series is

filtered as an autoregressive process. Our model performs well as it predicts the burst of

the bubble on April 10 correctly. It does however underestimate the additional decrease
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Figure 3.4.4: The filtered daily Bitcoin/USD exchange rate, taken from Hencic and Gouriéroux
(2015).
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in fundamental value after the bubble burst.

We compare our bubble model to the nested simpler model in which we set the bubble

always to zero. In that case we have only four parameters left out of eight. The resulting

Akaike information criteria are 646 for the full bubble model and 726 for the simpler

model. Therefore we conclude that including the bubble process adds descriptive power

and thus we prefer that model.

Observation driven parameter varying time series models have two main advantages.

The first one is that they are easy to estimate as the likelihood is accessible through predic-

tion error decomposition as discussed in Section 4.3. The second advantage is that further

analysis is straightforward once the model has been estimated, as we have closed form

formulas for the filtered time series. For example, we can calculate the probability that

the bubble condition in the next period holds. Figure 3.4.5 plots the filtered time series

and these probabilities for some period centered around the bubble. Here we see that the

probability of nonzero bubble values before the bubble start are virtually equal to zero.

As the bubble starts, the probability of a nonzero bubble is almost one. The probability

dips a little for April 8, as the fundamental value on April 7 has gone down a little. The

fundamental value then increases on April 8 however and thus so does the probability for

April 9. When we get to April 10 the probability is again almost zero as the large expo-

nential growth of the bubble has outgrown the fundamental value process on April 9 by

far too much.

The estimated probabilities above are just an example of many possible features that
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Figure 3.4.5: The filtered daily Bitcoin/USD exchange rate around the bubble in the top frame,
and the probability that the bubble condition holds in the next period shifted one period to the
right in the second frame.
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can be predicted. For example, once the model parameters are estimated, one can predict

expected remaining bubble life, the probability that a bubble will emerge at a given time,

or the expected maximal bubble size.

3.5 Conclusion

We have introduced a new observation driven time varying parameter model to describe

locally explosive behaviour in a stationary setting. We do so by splitting the asset price

into the sum of its fundamental value and a speculative bubble. For the sake of simplicity

we have assumed an AR(1) process for the fundamental value and a collapsing AR(1)

for the bubble process. However, these are not binding assumptions and many extensions

and variations are possible. Of course any mean reverting stationary process for the fun-

damental value fits exactly in the theoretic domain presented in the paper. Dynamics can

be changed by using a nonstationary process such as a random walk for the fundamental

value. Most asset pricing data is nonstationary, so this would mean that one does not have

to detrend the data, which makes out of sample forecasting possible. Other possibilities

that could be explored are extensions to the break condition. One could for example add

external stochastics allowing for more structural models that include specific financial or
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economic variables that can help in predicting bubble collapses. Another extension can

be made by changing the sudden collapse in a more smooth exponential decrease. The

dynamics of this model would then be very close to those described in the mixed causal

and noncausal literature.

3.6 Appendix: Proofs

3.6.1 Proof of Theorem 3.3.2

It is straightforward to verify the assumptions of Theorem 3.1 in Bougerol (1993) for the

system defined in equations (3.2) and (3.6). It then immediately follows that there exists

a unique causal stationary ergodic sequence (µt)t∈Z that satisfies (3.6) and that any other

solution (µ̂t)t∈N initialised at µ̂1 satisfies

‖µt − µ̂t‖Θ

eas→ 0 as t→∞.

Next, we substitute equation (3.1) into the survival function to obtain the bubble up-

dating function

bt+1 = φt(bt), where φt(b) = (ω + αb)1 {g(µt + b+ εt, µt, b) < 0} .

We then check Assumption A for Theorem 2.1 in Blasques and Nientker (2017). As-

sumption A1 is trivial and A2 is satisfied by Krengel’s Lemma: a measurable function of

a stationary ergodic sequence produces a stationary ergodic sequence, see Proposition 4.3

in Krengel (1985). For the final assumption A3 we note that φt(b) = 0 for all b ∈ [0,∞),

if

g(µt + b+ εt, µt, b) ≥ inf
b≥0

g(µt + b+ εt, µt, b) ≥ 0.

Therefore Assumption A3 is satisfied if

P
(

inf
b≥0

g(µt + b+ εt, µt, b) ≥ 0

)
> 0.
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This is implied by condition DGP 2, because (3.2) implies that µt and εt are independent

and both absolutely continuous on the real line. Therefore the joint random variable

(µt, εt) is absolutely continuous on R2 and thus P((µt, εt) ∈ S) > 0. We conclude that

there exists a unique causal stationary ergodic sequence (bt)t∈Z that satisfies the bubble

updating process defined in (3.1)–(3.5) and that any other solution (b̂t)t∈N initialised at b̂1

satisfies

∥∥∥bt − b̂t∥∥∥
Θ

eas→ 0 as t→∞.

The final conclusion follows again by Krengel’s Lemma.

3.6.2 Proof of Corollary 3.3.3

The solution for the fundamental process found in Theorem 3.3.2 is given by

µt =
∞∑
i=0

βεt−i−1,

so all moments of µt are finite over Θ as it is a compact space so that |β| is bounded and

the εt are Gaussian and thus have all finite moments. For the bubble process we have

bt = (ω + αbt−1)1{bt−1 < k(µt − c)} ≤ ω + max{αk(µt − c), 0}

and hence moment existence follows from those of the fundamental value process.

3.6.3 Proof of Proposition 3.3.4

We fix some ζ ∈ R and let ξ = f(x, ζ). The fact that f(x, ·) is continuously differen-

tiable implies by the inverse function theorem that it is invertible on a neighbourhood O

around ζ and that the inverse f−1(x, ·) is also continuously differentiable. Moreover, by

assumption, for Lebesque almost all x ∈ R there exists an L > 0 such that |f ′(x, ζ)| ≥ L

and thus f−1(x, ·) is Lipschitz as

d

dξ
f−1(x, ξ) =

1

f ′(x, ζ)
≤ 1

L
.
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The real line is separable, hence we can choose a countable number of disjunct com-

pact neighbourhoods {Ok}k∈N whose union is equal to R and f(x, ·) is invertible on each

neighbourhood as above. A continuously differentiable function on a compact set is ab-

solutely continuous, which in turn implies that it has the Luzin property, that is, sets of

measure zero are mapped to sets of measure zero.

We now prove that Xt is absolutely continuous. Let E ⊂ R be a set of Lebesque

measure zero and let F denote the distribution function of Xt, then by independence of

the ζt we have

P(Xt ∈ E) = P(f(Xt−1, ζt) ∈ E)

=

∫
R
P(f(x, ζt) ∈ E)F (dx) =

∞∑
k=1

∫
R
P(f(x, ζt) ∈ E ∩Ok)F (dx)

=
∞∑
k=1

∫
R
P(ζt ∈ f−1(x,E ∩Ok))F (dx) =

∞∑
k=1

∫
R

0F (dx) = 0,

where we used that E ∩Ok has Lebesque measure zero, f−1(x, ·) has the Luzin property

on each Ok and ζt is absolutely continuous. The absolute continuity of the conditional

distributions follows similarly as by the independence of the ζt and the Markov property

P(Xt ∈ E | Xt−1 = x1, . . . , Xt−n = xn) = P(Xt ∈ E | Xt−1 = x1)

= P(f(x1, ζt) ∈ E) = 0.

Next we show that the conditional densities are uniformly bounded. By assumption, we

know that the density of ζt is bounded by some B > 0. For some ξ ∈ R and η > 0 we

then have

P(ξ < Xt ≤ ξ + η | Xt−1 = x1, . . . , Xt−n = xn) = P(ξ < f(x1, ζt) ≤ ξ + η)

=
∞∑
k=1

P(ζt ∈ f−1(x1, (ξ, ξ + η] ∩Ok)) ≤
B

L
η,

where we used that f−1(x, ·) is 1
L

-Lipschitz on each Ok and the density of ζt is bounded

by B. Taking the limit of η → 0 shows that the conditional densities are all bounded by
B
L

.
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Finally we note that the full support of Xt follows directly from the fact that f(x, ζt)

has full support for all x ∈ R and ζt is absolutely continuous, and show the non exclusive

property in FLT 2. This follows from the Markov chain setup. Let A0 ⊂ R be all points x

such that P(A | X0 = x) > 0. ThenA0 has positive Lebesque measure asX0 is absolutely

continuous and

P (X0 ∈ A0) ≥ P(A and X0 ∈ A0) = P (A) > 0.

It follows that

P(A and B) =

∫
R
P(A and B | X0 = x)F (dx)

=

∫
R
P(A | X0 = x)P(B | X0 = x)F (dx) > 0,

where we used that P(A | X0 = x) is greater than zero on a set of positive Lebesque

measure and P(B | X0 = x) is greater than zero for all x ∈ R as f(x, ζt) has full support

for all x ∈ R and ζt is absolutely continuous.

3.6.4 Proof of Theorem 3.3.5

The existence of a stationary ergodic solution

We follow the approach used in Theorem 3.1 of Bougerol (1993) where we expand the

model equations backwards and show that this converges to a stationary ergodic solution.

We define the joint updating equation (µt, bt) = Φt−1(µt−1, bt−1), where for u ∈ R and

v ≥ 0 we have

Φt−1(u, v) = (φt−1(u, v), ψt−1(u, v)),

φt−1(u, v) = δ + ru+ γXt−1 − γv,

ψt−1(u, v) = (ω + αv)1{g(Xt−1, u, v) < 0}.
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To ease notation we write µ(0)
t = u and b(0)

t = v and then define the backward iterates

recursively for m ∈ N as

µ
(m)
t = φt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
and b

(m)
t = ψt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
.

The goal will be to show that b(m)
t is almost surely eventually constant as m → ∞ and

that limm→∞ µ
(m)
t exists. The stationary ergodic solution is then given by

(
lim
m→∞

µ
(m)
t , lim

m→∞
b

(m)
t

)
t∈Z

.

It is stationary ergodic by Corollary 2.1.3 of Straumann and Mikosch (2006) and it is a

solution since

lim
m→∞

µ
(m)
t = lim

m→∞
φt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
= φt−1

(
lim
m→∞

µ
(m−1)
t−1 , lim

m→∞
b

(m−1)
t−1

)
,

where we are allowed to swap the limit in because the second argument is eventually

constant and φt is continuous in its first argument. Similarly

lim
m→∞

b
(m)
t = lim

m→∞
ψt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
= ψt−1

(
lim
m→∞

µ
(m−1)
t−1 , lim

m→∞
b

(m−1)
t−1

)
,

where we are allowed to swap the limit in because the second argument is eventually

constant, the random variable

g
(
Xt−1, lim

m→∞
µ

(m−1)
t−1 , lim

m→∞
b

(m−1)
t−1

)
is absolutely continuous by assumption FLT 3 and the fact that g is monotone in its first

argument, and finally because g is continuous in its second argument by assumption FLT

4.

Lemma 3.6.1. The sequence b(m)
0 is eventually constant as m → ∞ and limm→∞ µ

(m)
0

converges almost surely.
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PROOF. Define

st = lim sup
m→∞

µ
(m)
t and it = lim inf

m→∞
µ

(m)
t .

The proof that the backward iterate limits above exist consists of two steps that we will

show later:

(i) We show that for every η > 0 there exists an event Aη ∈ F−1
−∞ of positive proba-

bility, such that conditional on Aη we have almost surely s0 − i0 < η and b(m)
0 is

constant for sufficiently large m.

(ii) We show that there exists an event Bη ∈ F∞−∞ that contains Aη, such that condi-

tional onBη we have st− it ≤ rt(s0− i0) for all t ∈ N. Moreover b(m)
t is eventually

constant for all t ∈ N.

Since (Xt)t∈Z is stationary ergodic there almost surely are infinitely many 0 > −t1 >

−t2 > . . . for which the event Bη shifted by tk to the right occurs. If it occurs for such a

−tk, then

s0 − i0 ≤ rtk(s−tk − i−tk) ≤ rtkη.

Taking the limit of k → ∞ then delivers s0 = i0 and thus the limit limm→∞ µ
(m)
0 con-

verges almost surely. The fact that
(
b

(m)
0

)
m∈N

is eventually constant follows immediately

from part (ii) and the same argument that the event Bη occurs for some −t < 0. �

Lemma 3.6.2. Claim (i) holds.

PROOF. We start out by showing that almost surely st − it <∞. This follows by a series

of upper bounds. Firstly we have

µ
(m)
t = δ + rµ

(m−1)
t−1 + γXt−1 − γb(m−1)

t−1 ≤ δ + rµ
(m−1)
t−1 + γXt−1

Assumptions FLT 5 and FLT 1 together with Lemma 2.1 in Straumann and Mikosch

(2006) ensure that expanding backwards and taking the limit converges, hence st < ∞.
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The infimum requires more work. Note that the Liptschitz condition of the inverse of g

in its third argument as stated in assumption FLT 4 ensure the existence of two constants

L,K > 0 such that

b
(m)
t =

(
ω + αb

(m−1)
t−1

)
1

{
g
(
Xt−1, µ

(m−1)
t−1 , b

(m−1)
t−1

)
< 0
}

=
(
ω + αb

(m−1)
t−1

)
1

{
b

(m−1)
t−1 < g−1

(
Xt−1, µ

(m−1)
t−1 , 0

)}
≤ ω + αmax

{
g−1

(
Xt−1, µ

(m−1)
t−1 , 0

)
, 0
}

≤ ω + αmax
{
K + L

(
µ

(m−1)
t−1 +Xt−1

)
, 0
}
.

It follows that

µ
(m)
t = δ + rµ

(m−1)
t−1 + γXt−1 − γb(m−1)

t−1

≥ (δ − γ(ω + αK)) + rµ
(m−1)
t−1 − γαLµ(m−2)

t−2 + γ (Xt−1 − αLXt−2) .

Again assumptions FLT 5 and FLT 1 together with Lemma 2.1 in Straumann and Mikosch

(2006) ensure that expanding backwards converges, hence it > −∞. We conclude that

st−it <∞. Note that these bounds immediately prove the moment statement in Theorem

3.3.5.

Next, we choose an M > 0 such that P (st − it < M) > 0 and let t =
⌈

log(η/m)
log r

⌉
,

where dxe is the smallest integer larger than x. Continuity of g in its second argument,

the positive probability condition in assumption FLT 4 and assumption FLT 2 guarantee

that by conditioning on the past we can show for each 0 ≤ v < t that

P
(

lim sup
m→∞

b
(m)
−v = 0

)
≥ P (g (X−v−1, s−v−1, 0) ≥ 0) > 0.

It follows by Assumption FLT 2 that there exists an event Aη ∈ F−1
−∞ of positive proba-

bility such that

st − it < M and lim sup
m→∞

b
(m)
−v = 0 for all 0 ≤ v < t.
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This then implies that

s0 − i0 = r(s−1 − i−1) + γ

(
lim sup
m→∞

b
(m)
−1 − lim inf

m→∞
b

(m−1)
−1

)
= rt(s−t − i−t) < rtM ≤ η,

which concludes the proof of part (i). �

Lemma 3.6.3. Claim (ii) holds.

PROOF. The argument will be a recursive one, conditional on Aη. Suppose that st − it <

rtη and b(m)
t is eventually constant, then

st+1 − it+1 = r(st − it) < rt+1η.

Next we show that there exists an event such that b(m+1)
t+1 is eventually constant. Note that

this holds if and only if

sign(g(Xt, it, bt)) = sign(g(Xt, st, bt)), (3.7)

where bt = limm→∞ b
(m)
t . The Lipschitz condition in assumption FLT 4 implies that there

exists a K > 0 such that

|g(Xt, st, bt)− g(Xt, it, bt)| ≤ K(st − it) < Krtη.

Moreover, the derivative being bounded away from zero by at least some B > 0 and the

monotonicity of g in its second argument implied by assumption FLT 4 then ensure that

(3.7) follows from

|g(Xt, st, bt)| > BKrtη.

We conclude that statement (ii) follows if |g(Xt, st, bt)| > BKrtη for all t ∈ N.

Next we determine the probability of this event. Let I2Krtη(st, bt) be a stochastic

interval of length Krtη such that if |g(Xt, st, bt)| ≤ BKrtη then Xt ∈ I2Krtη(st, bt).
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Then by assumption FLT 3 there exists a U > 0 such that

P
(
|g(Xt, st, bt)| ≤ BKrtη

∣∣Aη) ≤ P (Xt ∈ I2Krtη(st, bt)|Aη)

=

∫
P (Xt ∈ I2Krtη(st, bt)| st, bt, Aη) dP(st, bt)

≤
∫

2UKrtηdP(st, bt) = 2UKrtη.

It follows that

P
(
|g(Xt, st, bt)| > BKrtη, ∀t ∈ N

∣∣Aη)
= 1− P

(
|g(Xt, st, bt)| ≤ BKrtη, ∃t ∈ N

∣∣Aη)
≥ 1−

∞∑
t=1

P
(
|g(Xt, st, bt)| ≤ BKrtη

∣∣Aη)
≥ 1−

∞∑
t=1

2UKrtη ≥ 1− 2UKηr

1− r
.

This last number can be made larger than zero by choosing η sufficiently small. �

Partial solutions and continuous differentiability

The convergence of partial solutions to the true ones is essentially almost the same as the

one for the existence of a stationary ergodic solution. We can use the same bounds as in

statement (i) to show that |µ∗t | and |µ̂t| are bounded by some η with positive probability

and that their respective bubble processes are zero. It then follows by the same deriva-

tion as in part (ii) that they converge with positive probability. As (Xt)t∈Z is stationary

ergodic this event happens with probability one at some point in time and thus we get the

convergence.

Continuous differentiability follows by the same way as in Straumann and Mikosch

(2006). The stochastic recurrence equations for the derivatives of the fundamental and

bubble processes are either linear or standard resetting systems. Therefore their respec-

tive backward iterations converge to stationary ergodic solutions. This then implies the

continuous differentiability by a standard analysis result.
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3.6.5 Proof of Theorem 3.3.6

We follow the usual consistency proof for M -estimators which involves showing firstly

the uniform convergence of the sample average log likelihood to the limit log likelihood

and secondly the identifiable uniqueness of the parameter of interest; see e.g. Theorem

3.4 in White (1994) or Lemma 3.1 in Pötscher and Prucha (1997). To ease notation we

define the following functions Θ→ R:

ˆ̀
t = `(Xt, µ̂t(·, λ), b̂t(·, λ), σ2),

`∗t = `(Xt, µ
∗
t (·, λ), b∗t (·, λ), σ2).

Lemma 3.6.4. The sample average log likelihood almost surely converges uniformly to

the limit log likelihood, i.e.

∥∥∥L̂T − E`∗t
∥∥∥

Θ

as→ 0 as T →∞.

PROOF. We have

∥∥∥L̂T − E`∗t
∥∥∥

Θ
=

∥∥∥∥∥ 1

T

T∑
t=2

ˆ̀
t − E`∗t

∥∥∥∥∥
Θ

≤ 1

T

T∑
t=2

∥∥∥ˆ̀
t − `∗t

∥∥∥
Θ

+

∥∥∥∥∥ 1

T

T∑
t=2

`∗t − E`∗t

∥∥∥∥∥
Θ

.

(3.8)

We will show that the two rightmost terms in (3.8) go to zero as T → ∞. For the first

term note that ` is a differentiable function, we write

`f (µ̃, b̃) =
∂`(Xt, µ, b, σ

2)

∂(µ, b)

∣∣∣∣
(µ̃,b̃)

.

We then invoke the mean value theorem to obtain the existence of some (µ̃t, b̃t) between

(µ̂t, b̂t) and (µ∗t , b
∗
t ) that satisfies

∥∥∥ˆ̀
t − `∗t

∥∥∥
Θ
≤
∥∥∥`f (µ̃t, b̃t)∥∥∥

Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

≤
∥∥∥`f (µ̃t, b̃t)− `f (µ∗t , b∗t )∥∥∥

Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ
(3.9)

+ ‖`f (µ∗t , b∗t )‖Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

60



3.6. APPENDIX: PROOFS

The function `f is linear in its arguments and thus is a K-Lipschitz function for some

K > 0. Therefore assumption CS 2 guarantees that

∥∥∥`f (µ̃t, b̃t)− `f (µ∗t , b∗t )∥∥∥
Θ
≤ K

∥∥∥(µ̃t, b̃t)− (µ∗t , b
∗
t )
∥∥∥

Θ

≤ K
∥∥∥(µ̂t, b̂t)− (µ∗t , b

∗
t )
∥∥∥

Θ

eas→ 0 eas t→∞ ,

hence (3.9) almost surely goes to zero exponentially fast by assumption CS 2 and thus we

have

1

T

T∑
t=2

∥∥∥`f (µ̃t, b̃t)− `f (µ∗t , b∗t )∥∥∥
Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

as→ 0 as T →∞.

Next, note that
(
‖`f (µ∗t , b∗t )‖Θ

)
t∈Z is a stationary sequence by assumption CS 2 and

Proposition 4.3 in Krengel (1985). Therefore

1

T

T∑
t=2

‖`f (µ∗t , b∗t )‖Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

as→ 0 as T →∞

if ‖`f (µ∗t , b∗t )‖Θ has a log moment by assumption CS 2 and Lemma 2.1 in Straumann and

Mikosch (2006). Let log+(x) = max{0, log x}. The log moment follows from the fact

that

E log+ ‖`f (µ∗t , b∗t )‖Θ =
1

σ2
E log+

∥∥∥∥∥∥ Xt − µ∗t − b∗t
Xt − µ∗t − b∗t

∥∥∥∥∥∥
Θ

,

the finiteness of which is implied by the moment conditions in assumptions CS 1 and CS

2. We conclude that the first term in (3.8) converges to zero almost surely.

Finally, we discuss the second term in (3.8). We show that∥∥∥∥∥ 1

T

T∑
t=2

`∗t − E`∗t

∥∥∥∥∥
Θ

as→ 0 as T →∞

by application of the uniform law of large numbers, Theorem 2.7 in Straumann and

Mikosch (2006). The law of large numbers holds since (`∗t )t∈N is strictly stationary and
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ergodic by assumption CS 2 and Proposition 4.3 in Krengel (1985), and because

E ‖`∗t‖Θ = E
∥∥∥∥1

2
log(2πσ2)− 1

2σ2
(Xt − µ∗t − β∗t )2

∥∥∥∥
Θ

≤
∥∥∥∥1

2
log(2πσ2)

∥∥∥∥
Θ

+ c

∥∥∥∥ 1

2σ2

∥∥∥∥
Θ

(
EX2

t + E ‖µ∗t‖
2
Θ + E ‖b∗t‖

2
Θ

)
,

for some c > 0. This upper bound is finite by assumption CS 2, because Θ is compact

and the fact that σ2 > 0. �

Lemma 3.6.5. The parameter θ0 is identifiable unique on Θ.

PROOF. The identifiable uniqueness of θ0 ∈ Θ is implied by the uniqueness assumption

CS 3, the continuity of E`∗t and the compactness of Θ, see Chapter 3 in Pötscher and

Prucha (1997). The continuity of E`∗t follows directly from the fact that the sample like-

lihood, which is continuous, converges uniformly to E`∗t . �

3.6.6 Proof of Corollary 3.3.7

Theorem 3.3.6 ensures that (µ∗t , b
∗
t )t∈Z = (µt, bt)t∈Z, so that condition CS 2 follows.

The maximiser of the limit log likelihood is equal to the minimiser of the Kullback-

Leibler divergence between the true conditional density of the data and the model-implied

conditional density, see for instance Section 2.3 of White (1994). Therefore it follows

by the Gibbs inequality that the limit log likelihood is uniquely maximised at the true

parameter θ0 and thus condition CS 3 holds for the true parameter.

3.6.7 Proof of Theorem 3.3.8

This proof is identical to Section 7 of Straumann and Mikosch (2006).

3.6.8 Proof of Theorem 3.3.9

The desired result follows by the same argument as used above for proving asymptotic

normality under correct specification, with the exception that the score is not granted to
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be a martingale difference sequence. However, by assumptions AN 5 and AN 6, we have

that the score sequence is near epoch dependent of size −1 on a φ-mixing sequence of

size −r/(r − 1) for some r > 2. Given the moment bounds, we can thus appeal to the

central limit theorem for near epoch dependent sequences in Potscher and Prucha (1997,

Theorem 10.2).
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Chapter 4

Transformed Perturbation Solutions for

Dynamic Stochastic General

Equilibrium Models

4.1 Introduction

Since the seminal paper of Kydland and Prescott (1982) many different methods have

been proposed to approximate the solution of Dynamic Stochastic General Equilibrium

(DSGE) models, see for example Taylor and Uhlig (1990), Christiano and Fisher (2000)

and Aruoba et al. (2006) for comparison studies. It is well known that, in most cases,

closed form analytical solutions do not exist, and hence we need numerical solution meth-

ods.

When selecting solution methods, two properties are of main interest: speed and ac-

curacy. On the one hand, arbitrarily accurate solution algorithms such as value function

iteration (Bertsekas, 1987) and projection methods (Judd, 1992) have existed for a long

time. However, such methods need long computing times. This is problematic, especially

when one is interested in estimating a DSGE model, since then the solution will have

to be computed for a range of different parameter values. On the other hand, very fast

solution methods such as linearization (Blanchard and Kahn, 1980) and higher-order per-

turbation methods (Judd and Guu, 1997; Schmitt-Grohé and Uribe, 2004) are available.

These methods approximate the solution by taking a Taylor series expansion around the
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deterministic steady state. Unfortunately, despite being very fast, perturbation methods

also have important limitations.

Linearization, or first order perturbation, can be very inaccurate and is often too sim-

plistic from an economic perspective. For example, linear solutions are certainty equiva-

lent and therefore miss potential volatility dynamics in the innovations. That means that

one needs higher order perturbation methods for risk to matter, which affects a multitude

of topics. For instance, this is a relevant limitation when attempting to model time vary-

ing risk premia as in Fernández-Villaverde et al. (2011); Rudebusch and Swanson (2012);

Fernández-Villaverde et al. (2015) and requires a perturbation approximation of at least

third order to be solved. Similarly, linearization is highly inaccurate when comparing

welfare across different environments and can lead to paradoxical results (Tesar, 1995).

Kim and Kim (2003b) show that a welfare comparison based on a linear approximation

of the policy function may yield spurious results in a two-agent economy and that per-

turbation approximations of at least second order are required. Some welfare studies that

use higher order perturbation approximations can be found in Kollmann (2002), Kim and

Kim (2003a) and Bergin et al. (2007).1 Finally, Van Binsbergen et al. (2012) discuss the

need for higher order perturbation solutions to study consumer risk aversion.

The speed of perturbation methods and their ability to locally capture important non-

linear dynamics renders high-order perturbation a popular solution method. However,

higher-order perturbation is an unattractive approximation method from a global perspec-

tive as it defines an unstable dynamic system which produces explosive paths. In fact, one

can commonly show that sample paths generated using higher-order perturbations diverge

to infinity almost surely, even if the true policy function implies stable dynamics with

nonexplosive paths. This problem is outlined in Aruoba et al. (2006) and Den Haan and

De Wind (2010) and encountered in Fahr and Smets (2010) and Den Haan and De Wind

(2012), among others. See Section 3.3.2 and Section 5 in Den Haan and De Wind (2010)

for extensively discussed examples.

In order to deal with the unstable dynamics of higher-order perturbation solutions,

Kim et al. (2008) proposed the pruning method. The pruning method has been success-

fully implemented in software packages and effectively solves the problem of explosive

1Woodford (2002) discusses a set of assumptions that ensure first order approximations are sufficient.
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dynamics; see also Andreasen et al. (2017) for recent results on the stability and station-

arity of pruned solutions. However, pruned solutions must sacrifice local approximation

accuracy for stability. Den Haan and De Wind (2010) show that pruning “creates large

systematic distortions”. Furthermore, pruning is a simulation-based approximation and

hence does not provide a policy function. In fact, approximations based on the pruning

procedure contain different updates for identical values of the model’s original state vari-

ables. This means that “the implied policy rule is not even a function of the model’s state

variables” (Den Haan and De Wind, 2010).

Our paper introduces a new transformed perturbation solution method for DSGE mod-

els that is designed to avoid explosive paths produced by higher-order perturbation solu-

tions. Transformed perturbation is as fast as standard perturbation methods and can be

easily implemented in existing software packages like Dynare as it is obtained directly

as a transformation of existing perturbation solutions. The new method transforms the

standard perturbation approximation by replacing higher order monomials in the Taylor

expansion with transformed ones that are based on the transformed polynomials intro-

duced in Blasques et al. (2014). Transformed polynomial functions share the same funda-

mental approximation properties as polynomial functions. Blasques et al. (2014) shows

that transformed polynomials are dense in the space of continuous functions and attain

the same rates of convergence as polynomials in Sobolev spaces of n times continuously

differentiable functions. Additionally, in this paper, transformed perturbation is shown to

converge on analytic function domains and to have the same excellent local properties as

the standard perturbation method for continuously differentiable functions of appropriate

order. From a global perspective however, transformed perturbation performs infinitely

better than regular perturbation, because it provides a way of scaling down the higher

order perturbation terms that cause explosive behavior when the solution path moves far

away from the steady state. That way, transformed perturbation can be guaranteed to not

create additional fixed points if the Blanchard-Kahn conditions are satisfied. Moreover,

unlike pruning, the new solution method does not need to sacrifice accuracy by ignoring

higher order effects. Additionally, transformed perturbation is guaranteed to be always

more accurate than standard perturbation methods, which is not the case for pruned solu-

tions. Finally, in contrast to pruning, transformed perturbation also has the advantage of
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delivering a policy function from which the simulations are drawn.

In this paper, we prove that transformed perturbation produces non explosive paths

and that solutions are stable and strictly stationary ergodic with bounded moments. Ad-

ditionally, we show that solution paths exhibit fading memory (i.e. geometric ergodicity

and absolute regularity or β-mixing) and that sample moments of the process converge

exponentially fast to the moments of the solution. These are crucial properties for con-

ducting simulation-based estimation of parameters and simulation-based analysis of the

DSGE model. Overall, this renders the transformed polynomial solution attractive from

both a practical and theoretical stand-point.

We demonstrate the accuracy of the transformed perturbation method extensively for

two nonlinear DSGE models in which higher order perturbation is infeasible. We com-

pare second order transformed perturbation to first order perturbation and second order

pruning. The first model is a partial equilibrium model in which agents face idiosyncratic

income risk, introduced in Deaton Angus (1991) and Den Haan and De Wind (2012). For

this model we find that sample path errors of our method are less than half of those of

pruning and up to six times less than those for first order perturbation. This then results

into sample moments of the transformed perturbation method being up to ten times more

accurate than pruning and one-hundred times more accurate than perturbation. The sec-

ond DSGE model we study is a matching model from Den Haan and De Wind (2012).

Here transformed perturbation outperforms pruning up to a factor ten on path errors and

a factor thirty for sample moments. Moreover perturbation has path errors that are up

to twenty-five times larger and sample moment errors that are up to one-hundred times

larger compared to transformed perturbation.

The paper is structured as follows. We start by stating the definition of the trans-

formed perturbation method in Section 4.2. Section 4.3 analyses the statistical properties

of the transformed perturbation system and provides lenient and accessible conditions that

ensure paths are nonexplosive and laws of large numbers can be applied. Section 4.4 pro-

vides a theoretical foundation and motivation for the transformed perturbation approxima-

tion method. Finally Section 4.5 discusses the accuracy of the new method. We provide

theoretical results that show that transformed perturbation, accuracy wise, matches regu-

lar perturbation locally and strongly outperforms it globally. Moreover, we demonstrate

68



4.2. TRANSFORMED PERTURBATION

for two example models that transformed perturbation outperforms pruning and regular

perturbation on numerous common criteria.

4.2 Transformed Perturbation

4.2.1 The state space

Let ȳt be an ny-dimensional vector of control variables, let x̄t be an nx-dimensional vector

of endogenous state variables and let zt be an nz-dimensional vector of exogenous state

variables. We study the general class of DSGE models characterized by a set of first-order

dynamic optimality conditions that can be written as

0 = Et(f(ȳt+1, ȳt, x̄t+1, x̄t, zt+1, zt)), (4.1)

zt+1 = Λzt + σηεt+1. (4.2)

Here Et denotes the expectation operator conditional on the information at time t, and

f : R2(nx+ny+nz) → Rny+nx is a real function. The matrix Λ is assumed to be invertible

with spectral radius smaller than one. Finally σ is the auxiliary perturbation parameter

and εt+1 is a nz-dimensional vector of exogenous innovations with mean zero and finite

second moment that takes values in E ⊆ Rnz . Throughout the paper, we will assume that

(εt)t∈N is an independent and identically distributed (iid) stochastic process.

We define the deterministic steady states yss and xss of ȳt and x̄t respectively such

that

f(yss, yss, xss, xss,0nz ,0nz) = 0.

Furthermore, let yt = ȳt−yss and xt = x̄t−xss denote the random variables in deviations

from the steady-state, where yt takes values in Y ⊆ Rny and xt takes values in X ⊆ Rnx .

We write Z ⊆ Rnz for the domain of zt. Following Den Haan and De Wind (2012), the
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solution to the model given in equation (4.1) is of the form

yt+1 = g(xt, zt+1, σ), (4.3)

xt+1 = h(xt, zt+1, σ). (4.4)

We refer to (4.3) and (4.4) as the observation and state equations respectively. It follows

from our setup that g(0nx ,0nz , 0) = 0ny and h(0nx ,0nz , 0) = 0nx .

Both functions g and h, known as policy functions, are unknown functions that must

be approximated. If the function g in the observation equation is measurable, then the

stability of the solution of a DSGE model depends entirely on the state equation. For this

reason we will focus on approximating the function h in (4.4).

4.2.2 Function approximation methods

A wide range of techniques have been proposed in the literature to approximate the un-

known policy function h. In most cases, the approximate policy function is obtained as

an element of a vector space spanned by a set of basis functions {φ1, ..., φm}:

h(x, z, σ) ≈
m∑
i=1

Aiφi(x, z, σ),

where A1, ..., Am are matrices of coefficients that weight the basis functions φ1, ..., φm.

There exist a multitude of popular sets of basis functions and weight matrix calcu-

lation methods that have been proposed in the function approximation literature. Well

known classes of basis functions include power monomials, which are used with great

success in Taylor expansions, sigmoid trigonometric functions, that are prominently fea-

tured in Fourier approximations, Chebyshev polynomials, that play an important role on

orthogonal polynomial function approximation, Legendre polynomials, which are often

used for approximating density functions, and logistic functions, comprehensively ex-

plored in artificial neural network approximations. Popular methods for calculating the

weight matrices include Taylor’s method which obtains the matrices as weighted deriva-

tives at a given expansion point and minimizes the so called Taylor semi-norm (Apostol,

1967), function colocation methods, which minimize a discrete distance between the true
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and approximate policy function at a finite number of points and spectral approximation

methods, that minimize a continuous distance between the two functions. See e.g. Powell

(1981) for an overview of approximation literature and Judd (1998) for an application of

these methods to approximating policy functions of dynamic stochastic models.

4.2.3 Perturbation

Perturbation is a method that approximates the unknown policy function h by using power

monomials as basis functions in combination with Taylor’s method to find the weighting

matrices. This method is of particular interest in approximating policy functions of DSGE

models as it provides a fast and analytically tractable way of obtaining the weighting ma-

trices. The expansion point used in Taylor’s method is the deterministic steady state

(0nx ,0nz , 0). Choose x ∈ X and z ∈ Z and define v = (x, z) and
⊗

i v = v⊗ · · · ⊗ v︸ ︷︷ ︸
i times

,

where the empty Kronecker product is set to one. Then the m’th order perturbation ap-

proximation of h evaluated at (x, z, σ) can be expressed as

hp(x, z, σ) := H0 +Hxx +Hzz +
m∑
i=2

Hi

⊗
i

v, (4.5)

where we grouped all terms of v of the same power, regarding σ as a constant. That is,

H0 =
m∑
j=0

1

j!

∂j

∂σj
h(0nx ,0nz , 0)σj Hx =

m−1∑
j=0

1

j!

∂j+1

∂σj∂x
h(0nx ,0nz , 0)σj

Hz =
m−1∑
j=0

1

j!

∂j+1

∂σj∂z
h(0nx ,0nz , 0)σj Hi =

m−i∑
j=0

1

i!j!

∂j+i

∂σj∂vi
h(0nx ,0nz , 0)σj

Thus, H0 is an nx × 1 vector that is the sum of all the derivatives of h with respect to

powers of σ. The matrix Hx is an nx × nx matrix that is the sum of all the derivatives of

h with respect to x and powers of σ. The matrix Hz is an nx × nz matrix that is the sum

of all the derivatives of h with respect to z and powers of σ. Finally, the matrices Hi are

of dimension nx× (nx +nz)
i and given by the sum of all the derivatives of h with respect

to vi and powers of σ.
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4.2.4 The transformed perturbation method

A disadvantage of the power monomial set of basis functions, and therefore of perturba-

tion, is that the derivative of the approximation function tends to infinity away from the

steady state if m > 1. This creates highly explosive regions in the state space which

in practice means that sample paths eventually diverge to infinity with probability one.

The transformed perturbation method solves this problem by using another set of basis

functions called the transformed power monomials. This set of basis functions satisfies

all the advantageous properties that classical power monomials do. Blasques et al. (2014)

shows that transformed polynomials with unrestricted weighting matrices can be used

to approximate continuous functions with arbitrary accuracy, in the same way as classi-

cal polynomials, by application of the Stone-Weierstrass Theorem (Stone, 1937, 1948).

Additionally, Blasques et al. (2014) characterizes the convergence rates of transformed

polynomials on Sobolev spaces of smooth n-times continuously differentiable functions

with nth derivative bounded in Lp norm, through the application of Plesniak’s extension

of Jackson’s Theorem (Plesniak, 1990).

The set of transformed power monomials is obtained by multiplying the monomials

of order greater than one with an exponentially fast decaying function Φτ : X → R that

is a multivariate adaptation of the transformed function of Blasques et al. (2014) and is

defined as

Φτ (x) = e−τ‖x‖
2
e , (4.6)

where ‖x‖e denotes the Euclidean norm of x. Figure 4.2.1 plots the second and third

order one dimensional transformed monomials for varying values of τ . Note that the case

τ is zero sets the transformed monomials equal to the regular monomial basis functions.

The figure shows that the transformed monomials are almost identical to regular monomi-

als close to the steady state at zero. However, the derivatives of transformed monomials

vanish away from the steady state, which implies that no explosive regions are created

in the state space. In Section 4.5 we will further show that transformed perturbation has

the same local approximation properties as classical perturbation. In particular, local ap-

proximation rates are the same as for classical perturbation, and transformed perturbation
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Figure 4.2.1: Plots of the second, respective third, order one dimensional transformed monomial
in the left, respective right, panel for values of τ ∈ {0, 0.2, 0.5}.

approximations converge uniformly on compact analytic domains, just like perturbation

methods do. A large number of additional advantages of transformed perturbation over

classical perturbation and pruning methods are documented in Section 4.3 and Section

4.5.

State variables can be of different orders in size, so we replace the vector x in (4.6)

by the relative differences from the steady state x̃ = x/xss, where dividing is done entry

wise, to ensure all variables have equal effect. This definition works poorly if an entry of

xss is close to zero. For such an entry we take the simple transformation x 7→ ex ≈ 1 +x,

which is almost linear close to zero, and define x̃ = (ex+xss − exss)/exss . The m’th order

transformed perturbation approximation of h evaluated at (x, z, σ) is then defined as

htp(x, z, σ) = H0 +Hxx +Hzz +

(
m∑
i=2

Hi

⊗
i

v

)
Φτ (x̃), (4.7)

where all the H matrices are obtained using Taylor’s method and thus they are identical

to those in the regular perturbation function (4.5).

The constant τ determines the speed at which the higher order terms in (4.7) are going

to zero when moving away from the origin. Its value influences the shape of the resulting

policy function, and thus requires careful consideration. We offer two methods to set

τ . The first method is to find the optimal τ , denoted τ ∗, by minimizing some criterion
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function. In this paper we chose to minimise the maximum Euler errors on a relevant set

around the steady state. The advantage of this method is that we get the best possible

value for τ , according to the criterion function. The disadvantage is that minimizing

the criterion function potentially is time-consuming. In an estimation setting we fix the

optimal τ ∗ at the start and then estimate the remaining parameters while τ ∗ remains fixed.

This means that the possibly time consuming task of finding τ ∗ has to be executed only

once, making the method almost as fast as perturbation, still viable for estimation and

very accurate if the optimal τ ∗ does not vary too much with the parameters. The second

method is designed to avoid the optimization completely and is characterised by a plug-in

τ , denoted τ̂ , which is less precise, but found immediately. The plug-in value is given by

τ̂ =
1

c
log

(
1

1− ρ(Hx)

)
, (4.8)

where ρ(Hx) is the spectral value of the autoregressive part of the regular perturbation

solution and c is an approximation of the average range that the state variables take place

in. This range could be set according to prior knowledge on the variables, or approximated

by another solution method. In our case we used linear perturbation to simulate a series

and find the approximate range of our variables. In an estimation setting we update τ̂ as

the parameters are updated, since its calculation is very fast. See Section 4.4 for a detailed

discussion on the choice for our plug-in value.

4.3 Probabilistic analysis of the solutions

Throughout this paper we work with norms ‖ · ‖ on Euclidean space and their induced

matrix norms, which we will denote with the same notation ‖ · ‖ as there should be no

confusion in their use. Note that all matrix norms are equivalent, so that our statements

will work for any chosen norm.

Let x0 ∈ X and z0 ∈ Z be fixed and define the exogenous sample paths (zt)t≥0 and
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the transformed perturbation sample paths (xt)t≥0 recursively by

zt+1 = Λzt + σηεt+1,

xt+1 = htp(xt, zt+1, σ).

In this section we analyse the dynamics of the transformed perturbation system and pro-

vide two results on the stability of sample paths. To do so we split the perturbation

updating equation (4.7) into the sum of its linear part H0 + Hxx + Hzz and its nonlinear

part

D(x, z) :=

(
m∑
i=2

Hi

⊗
i

v

)
Φτ (x̃). (4.9)

Our results are based on the observation that the transformed perturbation policy function

(4.7) is asymptotically equal to its linear part as ‖x‖ → ∞. This follows because an

exponential function decays at greater speed than a polynomial, see Figure 4.2.1, and

thus for any 0 ≤ i ≤ m we have

lim
‖x‖→∞

(⊗
i

x

)
Φτ (x̃) = 0ni

x
.

We therefore study the transformed perturbation method as its asymptotic linear process

plus a deviation (4.9). Linear autoregressive processes and their stability have been exten-

sively studied. They are much easier to analyse compared to their nonlinear counterparts,

because we get an analytical closed form when we expand the expressions for xt and zt

back in time. It can be shown that if backwards expanding converges, then the limit is

a stationary ergodic solution to the system. See Theorem 3.1 in Bougerol (1993) for a

general result on the stability of contracting systems that uses this approach. In our first

result we closely mimic this technique by bounding the deviation from the linear process.

We require the following assumptions.

Assumption A.

A1. The spectral radius ρ(Λ) < 1.

A2. The spectral radius ρ(Hx) < 1.
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A3. There exists an r > 0 such that E‖εt‖rm <∞.

Our first result shows that solution paths generated by the transformed perturbation

solution are non-explosive almost surely if Assumption A holds. The conditions in As-

sumption A are very lenient. Assumption A2 is close to being both sufficient and nec-

essary. The spectral radius is a measure for the maximal scale at which Hx can stretch

a vector. Therefore, if ρ(Hx) > 1, then an eigenvector belonging to the eigenvalue that

is greater than one in absolute value is expanded by Hx. If the space spanned by this

vector is reachable from the exogenous variable space Z , then expanding backwards will

explode and thus diverge. Assumption A3 is satisfied for any r if, for example, the εt have

finite support, or are normally distributed, or have sub-exponential tails. Additionally, for

fat tailed distributions, the moments of xt and zt are a fraction of those of the innovations.

Theorem 4.3.1 (Non explosive paths). Suppose that Assumption A holds. Then the dy-

namic system defined in (4.2) and (4.4), featuring the transformed perturbation policy

function given in (4.7), produces sample paths that are non explosive almost surely, i.e. the

paths (zt)t∈N and (xt)t∈N satisfy

lim inf
t→∞

‖zt‖ <∞ and lim inf
t→∞

‖xt‖ <∞ a.s.

Theorem 4.3.1 shows that the transformed perturbation method does not produce ex-

plosive paths, unlike regular perturbation sample paths. However, we can show much

more. Our stability results are based on Markov chain theory as developed in Meyn and

Tweedie (1993). We are in a Markov chain setting, because we have assumed that (εt)t∈N

is an iid sequence. We provide two sets of assumptions, the first of which is more general

and harder to verify, while the second set imposes additional constraints that are straight-

forward to verify.

A point x∗ ∈ X is called reachable if for every open set x∗ ∈ O ⊆ X and start-

ing value x0 ∈ X there exists a t ∈ N such that P(xt ∈ O) > 0. A subset of X is

called reachable if all the points in it are reachable. We will need the following additional

assumptions.
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Assumption B.

B1. X has an open reachable subset.

B2. The innovation εt is absolutely continuous with respect to the Lebesque measure

on E with strictly positive density on a connected subset of E .

Our second result establishes the stationarity and ergodicity of the transformed per-

turbation solution. Additionally, it shows that the solution paths have fading memory in

the sense of geometric ergodicity and absolutely regularity (or β-mixing) of the process.

Finally, it also shows that the solution paths have finite r-th moment. Stationarity, fading

memory, and bounded moments are all important ingredients in the statistical analysis of

DSGE models, from estimation to probabilistic analysis.

Theorem 4.3.2. (Stationarity, fading-memory and bounded moments) Suppose that As-

sumptions A and B hold. Then there exists a unique stationary ergodic solution (x∗t , z
∗
t )t≥0

to the dynamic system defined in (4.2) and (4.4), featuring the transformed perturbation

policy function given in (4.7). Additionally,

(i) the solution has fading memory, i.e. it is geometrically ergodic and absolutely reg-

ular (or β-mixing);

(ii) the solution has finite moments µr := E‖x∗t‖r and νrm = E‖z∗t‖rm;

(iii) laws of large numbers apply to the sample paths, that is, almost surely

lim
T→∞

1

T

T∑
t=1

‖xt‖r = µr and lim
T→∞

1

T

T∑
t=1

‖zt‖rm = νrm.

Assumption B imposes additional conditions on our state space system. Assump-

tion B2 is quite weak and is satisfied for all distributions that are used in practice. The

stronger, and also harder to check, condition is Assumption B1. We present Assumption

B, because simplifying Assumption B1 will require us to assume that the innovations have

full support. This is not always the case, as we might, for example, have strictly positive

innovations. If we can make the assumption of full support, then we get an easier set of

conditions.
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Assumption C.

C1. There exists an integer t ≥ 1 such that the matrix
[
H t−1

x Hz · · · HxHz Hz

]
has

rank nx.

C2. The matrix Hx is invertible.

C3. The innovation εt is absolutely continuous with respect to the Lebesque measure

on Rnz with strict positive density on the whole space Rnz .

Proposition 4.3.3. Assumption C implies Assumption B.

Assumption C2 ensures that the transformed perturbation policy function does not

move to lower dimensional subspaces of X . Condition C1 implies that the effect of the

innovations is not contained in a lower dimensional subspace. This means that, together

with Assumption C3, they make sure that the transformed perturbation policy function

can reach any point in X and thus Assumption B1 is satisfied.

4.4 The plug-in tau

In this section we motivate our choice for τ̂ , the plug in value of τ , as defined in (4.8). As

mentioned in Section 4.2, its value influences the shape of the transformed perturbation

policy function and thus has an effect on sample path behaviour in the resulting trans-

formed perturbation dynamic system. We want to ensure two important properties for

this dynamic system. Firstly, we want sample paths to be stable and non locally explo-

sive. In Section 4.4.1 we argue that this requires relatively large values of τ . Secondly,

nonlinear dynamics must be preserved, which needs τ to take on somewhat small values,

see Section 4.4.2. Together these two conditions specify a rather narrow collection of

available functions, resulting in (4.8), as derived in Section 4.4.3.

4.4.1 Ensuring stability

The transformed perturbation method guarantees stable and nonexplosive paths regardless

of the choice of τ , as proved in Section 4.3. However, picking τ very small can create

locally explosive dynamics. Locally explosive dynamics originate when the jacobian of
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the policy function with respect to x has expected spectral radius greater than one on

a large enough subset of X . A spectral radius greater than one implies that the policy

function expands on some subspace, which can create multiple fixed points, as happens

with the regular perturbation policy function. Sample paths then typically move around

one fixed point, until a large innovation pushes it to another fixed point after which the

path moves around the new one. These jumps can locally look very similar to explosive

sample paths, even though the dynamic system is stable. We illustrate this effect with the

following example updating equation

xt+1 = 0.3xt + zt+1 + 2x3
t e
−0.5x2t , (4.10)

where the (zt)t∈N are updated as in (4.2). Note that this is a univariate example of (4.7)

with τ = 0.5. Figure 4.4.1a plots the expected value E(xt+1 | xt) as a function of xt.

This function has large intervals on which its absolute derivative exceeds one, which has
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Figure 4.4.1: The expected policy function (left panel) and an example sample path (right panel)
for the updating equations defined in (4.10) and (4.2).

resulted in a total of five fixed points. The smallest one at -2.35, the middle one at zero

and the largest one at 2.35 are attractors while the other two are repellers. A sample

path produced while using (4.10) will jump between the neighbourhoods around the three

attractors. Figure 4.4.1b plots an example sample paths that first spends some time around

-2.35, then jumps to a neighbourhood of the origin and then quickly moves on to the area
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around the largest attractor. Notice the similarity with an explosive sample path, even

though this path will almost surely eventually come down to the lowest attractor again.

We wish to keep the spectral value of the Jacobian of the transformed perturbation

policy function typically below one (in expectation) to avoid locally explosive behaviour.

This Jacobian is of the form

J = Hx + P (x, z)Φτ (x̃),

where P is a m’th order multivariate polynomial function. We can only control the non-

linear part of the derivative, i.e. the second part of the summation, with our choice for

τ . Any norm of P goes to infinity as ‖x‖ goes to infinity. Hence, if we choose τ too

small, then P (x, z)Φτ (x̃) creates large areas on the state space with expected spectral

radius greater than one. If we were only concerned with ensuring stability, then ideally

we would choose τ = ∞, so that Assumption A2 ensures that ρ(J) < 1 on the entire

state space. Doing so, however, cancels all nonlinear effects making the transformed per-

turbation method equal to linear perturbation, which as discussed in the introduction has

many flaws. Therefore we conclude that we would like to make τ as large as possible,

while preserving as much nonlinear dynamics as possible close to the steady state. If we

choose τ unequal to infinity, then its size generally must depend on ρ(Hx). The closer

ρ(Hx) is to one, the less room remains available for P (x, z)Φτ (x̃). Accordingly we have

to impose that τ goes to infinity as ρ(Hx) gets closer to one. Therefore we must find a

function f : (0, 1)→ [0,∞) such that τ = f(ρ(Hx)) and

lim
ρ(Hx)→1

f(ρ(Hx)) =∞. (4.11)

4.4.2 Preserving nonlinear dynamics

We have concluded that we want to choose large τ to avoid locally explosive behaviour,

but not so large as to destroy relevant nonlinear dynamics. In this section we formalise

what we mean with preserving nonlinear dynamics. To do so we expand xt back in time,
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mimic the proof of Theorem 4.3.1 and use Proposition 4.7.1 to find the upper bound

‖xt‖ ≤ c̃+
∞∑
k=0

‖Hx‖k‖Hz‖‖z∗t−k‖+ c

m∑
j=0

∞∑
k=0

‖Hx‖kτ−j/2
(
m−j∑
i=0

‖z∗t−k‖i
)
.

for some constants c, c̃ > 0. The first, respective second, summation here is the approx-

imate total effect over time of the linear, respective nonlinear, terms in (4.7). The first

summation

∞∑
k=0

‖Hx‖k‖Hz‖‖z∗t−k‖,

is the familiar term that arises in autoregressive processes.2 The autoregressive part Hxx

of the policy function (4.7) introduces memory into the system, so that past innovations

‖zt−k‖ influence the value of ‖xt‖. The strength of the memory depends on the size of

ρ(Hx). If it is close to zero, then memory fades away fast and past innovations are of

little weight to xt. As ρ(Hx) increases, past innovations matter more up to the limit case

ρ(Hx) = 1, where memory does not fade anymore, at which point every past innovation

is equally important and the sum diverges for all matrix norms.

We would like the impact of past innovations through the nonlinear terms of the trans-

formed perturbation policy function to be of the same magnitude as those of the linear

effect, so that both the linear and nonlinear dynamics are present in the solution paths.

Specifically, we want the rate at which τ goes to infinity to be restricted such that the

series

∞∑
k=0

‖Hx‖kτ−j/2
(
m−j∑
i=0

‖z∗t−k‖i
)

diverge for all 0 ≤ j ≤ m as ρ(Hx) → 1. If this were not the case, then they would

converge and thus we would restrict some nonlinear effects so much that the linear effect

is infinitely stronger as ρ(Hx) increases. To ease notation we define δt =
∑m−j

i=0 ‖z∗t‖i.

2Note that it converges by Assumption A, Proposition 2.5.1 of Straumann (2005) and Proposition 4.3 of
Krengel (1985).
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The argument above then amounts to the following desired result: for all j ∈ N we have

lim
ρ(Hx)→1

∞∑
k=0

ρ(Hx)kτ−j/2δt−k = lim
ρ(Hx)→1

f(ρ(Hx))−j/2
∞∑
k=0

ρ(Hx)kδt−k =∞. (4.12)

It is not immediately clear what divergence rates for f(ρ(Hx)) satisfy (4.12). Therefore

we include the following result to simplify the expression.

Lemma 4.4.1. Suppose that E‖εt‖m <∞. Then the limit

lim
ρ(Hx)→1

(1− ρ(Hx))
∞∑
k=0

ρ(Hx)kδt−k

converges to a finite and nonzero value.

It now follows from Lemma 4.4.1 that (4.12) is equivalent to

lim
ρ(Hx)→1

f(ρ(Hx))j/2(1− ρ(Hx)) = 0. (4.13)

4.4.3 Choice for tau

We need a function f : (0, 1) → (0,∞) that satisfies both (4.11) and (4.13). To simplify

these equations further we define f̃ : (0,∞) → [0,∞) as f̃( 1
1−ρ(Hx))

) = f(ρ(Hx)) and

substitute y = 1
1−ρ(Hx))

. Equations (4.11) and (4.13) then can be rewritten as

lim
y→∞

f̃(y) =∞ and lim
y→∞

f̃(y)j/2

y
= 0.

These two equations together specify a fairly small collection of functions. To find the

function that diverges fastest we consider families of familiar functions in decreasing

order of rate of divergence. Note that any exponential, polynomial or radical function

diverges to infinity too fast to satisfy the rightmost limit for all j ∈ N. The next natural

candidate in line for the rate of divergence is the logarithmic function, which leads to the

specification

f(ρ(Hx)) = log

(
1

1− ρ(Hx))

)
.
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This is the function we used for our choice in (4.8).

The constant τ should also depend on the size of the range on which the state variables

take place. Suppose that we increase the scale of our dynamic system while keeping the

exact same dynamics. Then τ should become smaller as regions farther away from the

steady-state are visited more often. Therefore we include the c parameter to make sure

that as we make the scale larger, τ becomes smaller. Many of the other elements involved

in the perturbation updating function, such as σ or Hi for i ≥ 2 seem to be omitted in

calculating the plug in τ . However, these elements have an effect on the range of the state

variables and thus are implicitly included via c.

4.5 Accuracy

In this section we evaluate the accuracy of the transformed perturbation solution. In Sec-

tion 4.5.1 we prove theoretic results on both global and local accuracy. We show that

the optimal transformed perturbation solution is always at least as accurate as regular

perturbation and demonstrate that transformed polynomials, like regular polynomials can

perfectly approximate the real policy function h as we let the approximation order m

go to infinity. Moreover, we prove that transformed perturbation is locally as accurate

as standard perturbation and present common situations in which transformed perturba-

tion globally outperforms regular perturbation. Section 4.5.2 discusses two DSGE models

from Den Haan and De Wind (2012) and compares all discussed solution methods accord-

ing to several criteria such as path errors, euler errors and produced moments. It shows

that transformed perturbation outperforms pruning and regular perturbation for both the

optimal τ ∗ and the plug in τ̂ .

4.5.1 Theoretical results

In order to analyse the accuracy of our approximation method we define the pointwise

approximation errors attained by the perturbation and transformed perturbation methods
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respectively, at (x, z, σ) ∈ X × Z × R≥0 as

Ep(x, z, σ) := ‖hp(x, z, σ)− h(x, z, σ)‖,

Etp(x, z, σ) := ‖htp(x, z, σ)− h(x, z, σ)‖.

We begin by showing that the function approximation by transformed perturbation con-

verges on analytic domains, like the standard perturbation approximation. This result

implies that we can arbitrarily accurately approximate the true policy function by increas-

ing the order m.

Proposition 4.5.1. Suppose that the true policy function is analytic over a compact set

S ⊆ X ×Z×R≥0. Then m-order transformed perturbation errors vanish uniformly over

S for any sequence τ → 0 as the perturbation order diverges to infinity. That is,

lim
m→∞,τ→0

sup
(x,z,σ)∈S

E
(m)
tp (x, z, σ) := ‖h(m)

tp (x, z, σ)− h(x, z, σ)‖ = 0.

Next, we prove that transformed perturbation is always able to outperform regular

perturbation.

Proposition 4.5.2. For any policy function h there exists a τ ≥ 0 such that Etp(x, z, σ) ≤

Ep(x, z, σ) for all possible values of x, z and σ.

Note that this result makes no assumptions on the true policy function and implies

that using the optimal τ ∗ for the transformation guarantees an equal or better approxima-

tion compared to regular perturbation. This result is true even when regular perturbation

sample paths do not seem to explode. Therefore, it may be argued that transformed per-

turbation should always be used over regular perturbation.

We proceed by studying the accuracy properties of the transformed perturbation method

for arbitrary values of the constant τ . First we show that locally the transformed polyno-

mials inherit the excellent approximation qualities of perturbation methods. This follows

because the exponential function Φτ (x̃) is asymptotically quadratic as ‖x‖ goes to zero.

A consequence of the proposition below is that, close to the steady state, errors between

the transformed perturbation paths and the true paths are of the same magnitude as the

errors between the regular perturbation paths and the true paths for m = 2, 3.
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Proposition 4.5.3. Suppose that x0 = 0nx and z0 = 0nz . Let (xt)t≥0 be the path gener-

ated by the true policy function (4.4) and let (x̂t)t≥0 be the path generated by the m’th

order transformed perturbation policy function, both initialised at these same starting

values. Then it holds for all t ∈ N that

‖x̂t − xt‖ =

O (σ3) if m = 2

O (σ4) if m > 2

as σ → 0.

Transformed perturbation has the same local properties as regular perturbation, but on

a global scale it is almost guaranteed to perform much better. Clearly if the true policy

function produces explosive sample paths, then our method, which does not, cannot be

assured to work well. The next result exhibits a very general set up in which the true

policy function is ensured to produce nonexplosive sample paths making transformed

perturbation infinitely more accurate in the tails than regular perturbation.

Proposition 4.5.4. Suppose that Assumptions A1, A3 and C3 hold and that the true policy

function h satisfies

lim sup
‖x‖→∞

E(‖h(x, z1, σ)‖ | z0 = z)

‖x‖
< 1 (4.14)

for all possible values of z and σ. Then the true policy function almost surely produces

nonexplosive sample paths and if hp(x, z, σ) contains a nonzero higher order monomial

in x, then

lim
‖x‖→∞

Etp(x, z, σ)

Ep(x, z, σ)
= 0 (4.15)

for all possible values of z and σ outside of a set of Lebesque measure zero.

Moreover, condition (4.14) is implied by each of the following common conditions that

are found in the literature on stable stochastic dynamic systems. The true policy function

h

(i) is eventually bounded by the 45 degree line for all possible values of z and σ. That
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is,

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

< 1.

(ii) is uniformly contracting for all possible values of z and σ. That is,

sup
x1,x2∈X

‖h(x1, z, σ)− h(x2, z, σ)‖
‖x1 − x2‖

< 1.

(iii) is slowly varying at infinity for all possible values of z and σ. That is, for all a > 0

we have

lim
‖x‖→∞

h(ax, z, σ)

h(x, z, σ)
= 1.

4.5.2 Applications

In this section, we revisit two DSGE models used in Den Haan and De Wind (2012) to

compare transformed perturbation to pruning and other solution methods. Below, we will

show that the transformed perturbation approximation significantly outperforms both the

regular perturbation approximation and the pruning method. For the purpose of com-

paring the performance of different solution methods, the true policy function will be

approximated to an arbitrary level of accuracy on a relevant set using techniques such as

projection methods or value function iteration, see Aruoba et al. (2006). We can then

compare the solution methods by analysing sample paths between the “true” solutions

and the approximated ones. The length of our time paths are T = 104, with a burn in

period of 500 observations.

We compare sample paths according to three different criteria. The first one measures

the distance between a period t variable generated by an approximation versus the one

generated by the true policy function as in Den Haan and De Wind (2012). Let xt be a

generalisation of a univariate variable according to the true solution, let ẋt be generated

according to some approximation and let M be the mean of the path (xt)
T
t=1. Then we
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define the error at time t as

min

{∣∣∣∣ ẋt − xtxt

∣∣∣∣ , ∣∣∣∣ ẋt − xtM

∣∣∣∣} ,
that is, we take the minimum of the absolute percentage error and the absolute error

relative to the mean of the true solution path. The minimum between these two is chosen

because the percentage error inflates the error when xt is close to zero, while the error

scaled by the mean overestimates inaccuracy when variables take on values far away from

their mean.

The second criteria that we use are Euler errors. The equilibrium condition (4.1) is

typically unequal to zero when we use an approximation method instead of the true solu-

tion. Its size is an indication for accuracy, because the size of the difference in supremum

norm on a compact set between an approximate policy function and the true solution is of

the same magnitude as the Euler error, see Theorem 3.3 of Santos (2000). We report the

non normalized sample Euler error. We don’t normalize our Euler errors, because we are

only interested in relative accuracy.

Finally we compare sample moments generated by the approximated paths versus the

true ones. DSGE models are often estimated using moment based approaches such as

the (simulated) method of moments or indirect inference. Therefore the accuracy of the

moments will have an impact on the estimated parameters. Let xt and yt be univariate

variables, then we compare the sample moments

µk(xt) =
1

T

T∑
t=1

xkt

and cross moments µ(xity
j
t ).

The Deaton model

The first model we consider is a partial equilibrium model in which agents face idiosyn-

cratic income risk. The original model was proposed in Deaton Angus (1991), however,

we use the modified penalty function that was introduced in Den Haan and De Wind

(2012) to compare pruned and non-pruned perturbation solution methods. The model
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is therefore identical to Model 3 in Den Haan and De Wind (2012). The optimization

problem is given by

max
(ct,at)∞t=1

E1

∞∑
t=1

βt−1

(
c1−γ
t − 1

1− γ
− P (at)

)
,

s.t.

ct + at/(1 + r) = at−1 + ezt ,

zt = z̄ + εt,

εt ∼ N(0, σ2),

a0 given,

where ct stands for the agents consumption, ezt represents exogenous and random income

and r is the exogenous interest rate. The variable at denotes the amount of chosen assets

in period t, we assume that a0 is given. The amount of assets is allowed to be negative, so

the agent can borrow. The function P is given by

P (at) =
η1

η0

e−η0at + η2at.

Note that it is decreasing in its argument and thus penalizes utility when the agent decides

to borrow. We write xt = at−1 + ezt for the amount of cash on hand at time t. Note that

this DSGE model has a univariate state equation in xt, because the zt are independent.

Our calibration is copied from the original paper and given in Table 4.5.1. The value

r γ z̄ σ β η0 η1 η2

0.03 3 0.4 0.1 0.9 20 0.04464 0.00352

Table 4.5.1: The choice of parameter values for the Deaton model.

of β is low to make agents impatient and ensure that borrowing constraints have suffi-

cient effect on the decision process. The value of σ is chosen large, because the model

describes single agent/household behavior and thus works with idiosyncratic uncertainty.

The values of η1 and η2 are chosen such that at has the same moments as in Deaton Angus

(1991). We refer to Den Haan and De Wind (2012) for a more detailed discussion on the

model and choice of parameters.
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We use a second order perturbation approximation to obtain

xt+1 − xss = 0.01 + 0.42(xt − xss) + 1.02(xt − xss)2 + ezt+1

and values for τ given by τ ∗ = 1.08 and τ̂ = 0.98. The innovations in the model are

strictly positive, so we cannot use Assumption C to ensure stability of transformed pertur-

bation sample paths. Instead we use Assumption B, which is easy to check in univariate

cases. Note that all parameters are positive and the autoregressive parameter is smaller

than one. It immediately follows that the transformed perturbation approximation is able

to reach any sufficiently large point and thus we have an open interval of reachable points

and Assumption B1 is satisfied. All the other Assumptions in A and B are easily checked.

Therefore we obtain all the desired stability results from Theorem 4.3.2.

To compare the approximate policy functions we plot in Figure 4.5.1a the expected

value of next-period’s cash on hand E(xt+1 | xt), because this directly reveals whether

the dynamics are stable or not. The true policy function has a single stable fixed point (an

attractor). In contrast, the second order perturbation policy function has a second fixed

point (a repeller). This second intersection with the y = x line is located above the true

steady state. Sample paths produced by the second order perturbation function eventually

reach the state space to the right of the repeller, after which they are expected to diverge,

and eventually do with probability one. Since the second fixed point is relatively close to

the true steady state this also frequently occurs in our finite time simulated paths, making

second order perturbation infeasible. The transformed perturbation policy function solves

the problem as it negates the second order monomial fast enough to ensure that no second

fixed-point is created. The optimal and plug in values for τ , while irrelevant for stability,

therefore create a policy function that generates very similar dynamics as the true policy

function. Figure 4.5.1c displays the same functions as in Figure 4.5.1a, but focussed

on the relevant part of the state space when using stable methods. In addition we have

added a scatter plot of the pruning sample path. From this plot it becomes immediately

apparent that pruning does not deliver a policy function on the original state space, as we

have different updates for the same starting value. Moreover, it can be seen that pruning

on average is less accurate than both the transformed perturbation methods. The policy
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Figure 4.5.1: Expected policy functions for xt in the Deaton model generated by a second order
perturbation approximation and the transformed perturbation method for both the optimal τ∗ and
the plug in τ̂ . Figure 4.5.1a shows the actual policy functions, Figure 4.5.1b shows the pointwise
errors with respect to a close approximation of the true policy function and Figure 4.5.1c zooms
in on the relevant part of the state space to compare the previous methods to pruning.

function corresponding to the optimal τ ∗ can be seen to be slightly more accurate than the

plug in τ̂ . This is extra apparent when we look at the pointwise errors between the true

path and the perturbation respective transformed perturbation approximations in Figure

4.5.1b.

It’s not surprising that the resulting transformed perturbation sample paths are very

close to the true ones. The sample path accuracy results are summarised in Table 4.5.2,

where we report maximum and mean absolute path errors in addition to Euler errors.

Here we see that second order perturbation explodes, so sample paths created by this
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Path errors Euler errors
at ct

max mean max mean
Perturbation 1 132 38.4 10.7 1.06 3.11
Perturbation 2 ∞ ∞ ∞ ∞ -
Transformed 2 optimal 53.0 6.54 3.29 0.31 0.28
Transformed 2 plug-in 54.4 6.50 3.40 0.31 0.29
Pruning 2 123 13.6 6.42 0.69 0.51

Table 4.5.2: Absolute sample path and Euler errors for the Deaton model. Path errors are com-
pared to a projection approximation and given in percentages. Euler errors are also scaled by 102.
The results are based on a time path of 104 observation with a burn in time of 500 observations.

approximation are unusable. Therefore we need a stable approximation approach. The

transformed perturbation approximation performs better than pruning and much better

than linear approximation on all criteria. Note that the maximum and mean path errors

for the transformed perturbation are about half of those for the pruning approximation, in

both the asset and consumption paths.

The difference in accuracy is extra apparent when we look at the cumulative path er-

rors, see Figure 4.5.2, which are significantly smaller for our method. This accumulation

of inaccuracy then leads to larger errors when we compute some of the sample moments,

which can be found in Table 4.5.3. Here we see that first order perturbation performs a
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Figure 4.5.2: Cumulative paths errors for the number of assets in the left panel and consumption
in the right panel. Errors are calculated by a close approximation of the true policy function.

lot worse than the other methods on the asset moments, which was to be expected, as it

missed the nonlinear effects. Transformed perturbation is more accurate than pruning for
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Sample moments
µ(at) µ2(at) µ3(at) µ4(at) µ(ct) µ2(ct) µ3(ct) µ4(ct)

True 0.083 0.016 0.004 0.001 1.502 2.264 3.423 5.192
Perturbation 1 58.1 62.2 84.2 89.7 0.09 0.11 0.03 0.16
Transformed 2 optimal 0.70 7.58 7.83 6.79 0.00 0.03 0.09 0.17
Transformed 2 plug-in 0.43 6.89 6.25 3.77 0.00 0.03 0.09 0.17
Pruning 2 5.88 23.50 31.66 38.27 0.01 0.06 0.20 0.40

Cross moments
µ(atct) µ(atc

2
t ) µ(atc

3
t ) µ(a2t ct) µ(a2t c

2
t ) µ(a3t ct)

True 0.13 0.20 0.31 0.03 0.04 0.006
Perturbation 1 57.3 56.5 55.7 63.0 63.6 84.1
Transformed 2 optimal 0.96 1.18 1.35 7.45 7.30 7.65
Transformed 2 plug-in 0.69 0.90 1.07 6.73 6.57 6.03
Pruning 2 6.30 6.58 6.75 23.2 22.8 31.1

Table 4.5.3: Sample and cross moments up to fourth order for the Deaton model. The true row
presents the moments given by a close approximation. The other moments are given as absolute
percentage differences from the true ones. The results are based on a time path of 104 observation
with a burn in time of 500 observations.

all moments, especially for ones concerning the assets where we see improvement up to

a factor ten. Surprising is that the plug-in τ̂ transformed policy function performs better

on the moments than the optimal τ ∗ transformed policy function.

Performance in a parameter estimation scenario

When researchers are interested in estimating parameters, it is important to ensure that

the employed approximation method is accurate across a wide range of parameter values.

It is thus important to investigate what happens to the accuracy of our approximation

methods when we move the parameters away from an initial calibrated parameter value.

Figure 4.5.3 plots the expected Euler errors for varying values of β and γ. Note that,

as described in Section 4.2.4, for the optimal transformed perturbation method we have

kept the initial calculated optimal τ ∗, while the plug in transformed perturbation method

updates τ̂ along with the parameters. We see in Figure 4.5.3 that the expected Euler errors

for both the transformed perturbation methods are smaller than those for the pruning

method on a significant area around the calibration. This implies that each transformed

perturbation method outperforms the pruning method in an estimation setting when the

initial parameters have been set sufficiently close to the true ones. The two transformed

perturbation methods have such similar Euler errors, because the plug-inτ̂ does not vary

much as we change the parameters and stays especially close to the optimal τ ∗.
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Figure 4.5.3: Expected Euler errors for the Deaton model on an area around the calibrated param-
eter values. Figure 4.5.3a portrays the results when changing β and Figure 4.5.3b when changing
γ.

The Matching model

The second model we examine is a matching model also featured in Den Haan and

De Wind (2012). The model has two types of agents, workers and entrepreneurs, both

of which are members of the same representative household. The household earns wages

and firm profits from its members at the end of each period. These are then distributed

among the members for consumption.

Firms: The main decision is made by a representative entrepreneur who tries to max-

imise future discounted firm profits. The maximisation problem is given by

max
(nt,vt)∞t=1

E1

∞∑
t=1

βt−1

(
ct
c1

)−γ
((ezt − w)nt−1 − ψvt) ,

s.t.

nt = (1− ρn)nt−1 + pf,tvt,

zt =

zt−1 with probability ρz

−zt−1 with probability 1− ρz
,

n0, z1 given.

Here ct is the consumption level of the household, nt is the number of employees at

the end of period t, vt is the number of vacancies set by the firm, pf,t is the number of

matches per vacancy, w is the wage rate, ψ is the cost of placing a vacancy and ρn is the
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exogenous separation rate. Each worker produces ezt , which means that the profit per

worker is given by ezt − w. The random variable zt can only take on two values, which

we denote −ζ and +ζ . This is an artificial simplification introduced in Den Haan and

De Wind (2012) enabling us to easily analyse the approximation methods to the model in

a graphical manner. Alternatively, one can use a standard autoregressive updating function

for zt. Finally, the firm takes the number of matches pf,t as given.

Consumers: The household consumes the whole income earned by its members. That

is,

ct = wnt−1 + (ezt − w)nt−1 − ψvt = eztnt−1 − ψvt.

Matching market: The number of hires per vacancy is determined on a matching

market where the firms and 1 − nt−1 unemployed workers search for a match. The total

number of matches is given by

mt = φ0(1− nt−1)φv1−φ
t .

This implies that the total number of matches per vacancy is given by

pf,t =
mt

vt
= φ0

(
1− nt−1

vt

)φ
.

The model requires some restrictions on the parameters to ensure that a solution in the

interior of the domain exists and thus that the policy function is smooth. Our choice

of parameter values is again taken from Den Haan and De Wind (2012) and given in

Table 4.5.4. See the original paper for a detailed discussion on the matching model, the

parameter values and further references.

γ w ψ ρn ρz ζ σ β φ0 φ
4.5 0.973 0.4026 0.0368 0.975 0.0224 0.007 0.99 0.7 0.5

Table 4.5.4: The choice of parameter values for the Matching model.
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A second order perturbation approximation of the state equation delivers

nt+1 − nss = 0.95 + 0.46(nt − nss) + 0.52zt+1

− 2.92(nt − nss)2 − 6.57(nt − nss)zt+1 − 1.01z2
t+1

and we find

τ ∗ = 26.1 and τ̂ = 13.6.

The updating equation for the exogenous state variable zt is not of the type (4.2). One

can extend the theory in a rather straightforward way to also apply to general Markov

chain updating equations for the exogenous state variables, but we chose not to do this

to keep the assumptions and proofs relatively clear and concise. Note that if we would

have chosen a standard autoregressive process of order one for (zt)t≥0, then Assumptions

A and C can easily seen to be satisfied as we have a univariate system. Therefore, in that

case, we would have obtained all the desired stability results from Theorem 4.3.2.

The control variables can be explicitly calculated once the path for the single state

variable, the number of employees, is known. We therefore compare the approxima-

tion methods according to their best performance: either calculating the control variables

directly, or approximating the observation equation. We compare the transformed pertur-

bation and regular perturbation approximation in Figure 4.5.4. Figure 4.5.4a shows the

policy functions for the number of employees in the two possible scenarios for zt. The

case zt = −ζ is the crucial one here, as the regular perturbation approximation stays

below the y = x line and therefore does not intersect it. This implies that the second

order perturbation sample paths for nt tend to minus infinity if zt is equal to −ζ for many

consecutive times. The case zt = +ζ goes to minus infinity for values of nt much smaller

than portrayed in the figure. Hence, once nt has become small enough it has no chance

of recovering and thus sample paths diverge to minus infinity with probability one. As

in the previous example, the explosive behaviour is encountered in our finite time sample

paths with a high frequency, rendering regular perturbation infeasible. The transformed

perturbation policy function avoids the problem described for both values of τ as they

both scale down the second order monomial fast enough to ensure that the policy func-
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Figure 4.5.4: Policy functions for nt in the matching model generated by a second order pertur-
bation approximation and the transformed perturbation method. Figure 4.5.4a shows the actual
policy functions, Figure 4.5.4b shows the pointwise errors with respect to a close approximation
of the true policy function and Figure 4.5.1c zooms in on the relevant part of the state space to
compare the previous methods to pruning.

tions cross the y = x line at a unique point, like the true policy function. The dynamics of

our approximated systems therefore closely mimic the true dynamics for nt. Figure 4.5.4c

again zooms in on the relevant part of the state space when using the stable solution meth-

ods and includes a scatter plot of the pruning sample path. Again, we are reminded that

pruning does not provide a policy function on the original state space. Moreover, pruning

provides less accurate updates, especially for large value of nt in the case zt = +ζ and

small values in the case zt = −ζ . The policy function corresponding to the optimal τ ∗ is
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clearly the most accurate method in our comparison, which is extra clear when we look

at the pointwise errors between the true path and the perturbation respective transformed

perturbation approximations in Figure 4.5.4b.

The graphical results are strengthened by studying the sample path errors in Table

4.5.5. Here we see that the transformed perturbation approximation is both in extreme

Path errors Euler errors
nt ct

max mean max mean
Perturbation 1 3.20 1.89 3.53 1.80 0.26
Perturbation 2 ∞ ∞ ∞ ∞ -
Transformed 2 optimal 0.26 0.07 0.64 0.32 0.08
Transformed 2 plug-in 0.71 0.25 0.97 0.23 0.04
Pruning 2 1.79 0.95 1.76 0.95 0.10

Table 4.5.5: Absolute sample path and Euler errors for the matching model. Path errors are
compared to a close approximation of the truth and given in percentages. Euler errors are also
scaled by 102. The results are based on a time path of 104 observation with a burn in time of 500
observations.

cases and on average performing better than both perturbation and pruning. The improve-

ment compared to perturbation is not surprising given the nonlinearity of the plots in

Figure 4.5.4. This time the optimal transformed perturbation method performs better than

the plug in approximation. It is also more than a factor ten times better on average than

pruning for the number of employees and more than a factor three times better on average

than pruning on consumption paths.

We emphasize the gravity of the difference in accuracy by plotting the cumulative path

errors in Figure 4.5.5. This total difference in accuracy then again leads to a large differ-

ence in sample moment accuracy, which is summarised in Table 4.5.6. Like before we see

that the transformed perturbation method, especially the optimal one, is best at mimicking

the dynamics of the sample paths. Note that both the optimal and transformed perturba-

tion method outperform pruning on all moments, especially for the higher order moments,

where pruning loses relatively more accuracy by ignoring higher order effects. Optimal

transformed perturbation outperforms pruning up to a factor forty for the fourth order mo-

ments of consumption, while plug-in transformed perturbation outperforms pruning by a

factor three for most moments.
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Figure 4.5.5: Cumulative paths errors for the number of employees in the left panel and con-
sumption in the right panel. Errors are calculated by a close approximation of the true policy
function.

Sample moments
µ(nt) µ2(nt) µ3(nt) µ4(nt) µ(ct) µ2(ct) µ3(ct) µ4(ct)

True 0.93 0.87 0.81 0.76 0.91 0.83 0.76 0.70
Perturbation 1 1.90 3.77 5.62 7.43 1.81 3.57 5.27 6.91
Transformed 2 optimal 0.03 0.05 0.07 0.10 0.02 0.04 0.05 0.06
Transformed 2 plug-in 0.23 0.45 0.65 0.83 0.20 0.39 0.55 0.70
Pruning 2 0.68 1.30 1.88 2.40 0.65 1.23 1.73 2.16

Cross moments
µ(ntct) µ(ntc

2
t ) µ(ntc

3
t ) µ(n2t ct) µ(n2t c

2
t ) µ(n3t ct)

True 0.85 0.78 0.71 0.79 0.73 0.74
Perturbation 1 3.67 5.39 7.04 5.50 7.17 7.30
Transformed 2 optimal 0.04 0.06 0.07 0.07 0.08 0.09
Transformed 2 plug-in 0.42 0.59 0.73 0.62 0.77 0.80
Pruning 2 1.27 1.78 2.22 1.83 2.28 2.34

Table 4.5.6: Sample and cross moments up to fourth order for the matching model. The true row
presents the moments given by a close approximation. The other moments are given as absolute
percentage differences from the true ones. The results are based on a time path of 104 observation
with a burn in time of 500 observations.

Performance in a parameter estimation scenario

Once more we investigate the accuracy of the discussed methods in an area around the cal-

ibrated parameter values. Figure 4.5.6 plots the expected Euler errors for varying values

of β and γ while keeping the steady state values for the number of employees, the number

of matches per unemployed worker and the number of matches per vacancy equal. As in

the previous example we fix the optimal τ ∗ at the initial derived value at the calibrated

parameters, while the plug in τ̂ is updated along with the parameters. Figure 4.5.6 shows

98



4.6. CONCLUSION

us that the expected Euler errors for each transformed perturbation method is smaller than

those for the pruning method on a relevant area around the calibration. Therefore, we

again conclude that an estimation procedure using the transformed perturbation method

improves accuracy over using either linear perturbation or pruning when the starting val-

ues are decently close to the true parameters.
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Figure 4.5.6: Expected Euler errors for the matching model on an area around the calibrated
parameter values. Figure 4.5.6a portrays the results when changing β and Figure 4.5.6b when
changing γ while keeping the steady state values for the number of employees, the number of
matches per unemployed worker and the number of matches per vacancy equal.

4.6 Conclusion

This paper introduces a new solution method for DSGE models that produces non ex-

plosive paths. The proposed solution method is as fast as standard perturbation methods

and can be easily implemented in existing software packages like Dynare as it is obtained

directly as a transformation of existing perturbation solutions proposed by Judd and Guu

(1997) and Schmitt-Grohe and Uribe (2004), among others. The transformed perturba-

tion method shares the same advantageous function approximation properties as standard

higher order perturbation methods and, in contrast to those methods, generates stable sam-

ple paths that are stationary, geometrically ergodic and absolutely regular. Additionally,

moments are shown to be bounded. The method is an alternative to the pruning method as

proposed in Kim et al. (2008). The advantages of our approach are that, unlike pruning,
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it does not need to sacrifice accuracy around the steady state by ignoring higher order

effects and it delivers a policy function. Moreover, the newly proposed solution is always

more accurate globally than standard perturbation methods and has proven to have su-

perior accuracy compared to regular perturbation and pruning for two example nonlinear

DSGE models.

4.7 Appendix: Proofs

4.7.1 Proofs of Section 4.3

We study the transformed perturbation method, as indicated in Section 4.3, as its asymp-

totic linear process plus a deviation (4.9). The deviation is bounded in x as Φτ (x̃) dom-

inates the function far away from the origin. The following result gives a uniform upper

bound to the size of the deviation over X .

Proposition 4.7.1. There exists a constant c ≥ 0 that does not depend on τ , such that

sup
x∈X
‖D(x, z)‖ ≤ c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z‖i
)
.

PROOF. In this proof we specifically choose ‖ · ‖ equal to the Euclidean matrix norm

‖ · ‖e. This matrix norm is a crossnorm, i.e. it is multiplicative on Kronecker products,

see for example Lancaster and Farahat (1972). This implies, together with sub-additivity

and sub-multiplicativity, that

‖D(x, z)‖ ≤
m∑
i=2

‖Hi‖‖v‖iΦτ (x̃)

≤
(

max
2≤i≤m

‖Hi‖
) m∑

i=2

i∑
j=0

‖x‖j‖z‖i−jΦτ (x̃)

≤
(

max
2≤i≤m

‖Hi‖
) m∑

j=0

‖x‖jΦτ (x̃)

(
m−j∑
i=0

‖z‖i
)
.
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Next, note that

‖x‖jΦτ (x̃) ≤ ‖x‖je−τ‖x‖2e/max{xss},

which is a univariate function in ‖x‖e, since we chose ‖ · ‖ equal to ‖ · ‖e. It is straightfor-

ward to verify that this function is maximised at ‖x‖2
e = jmax{xss}

2τ
and thus there exists a

constant c̃ that does not depend on τ or x such that

sup
x∈X
‖x‖jΦτ (x̃) ≤ c̃τ−j/2 for all 0 ≤ j ≤ m.

�

Proof of Theorem 4.3.1

Assumptions A1 and A3 imply by Theorem 3.1 in Bougerol (1993) and the monotone

convergence theorem that there exists a unique stationary ergodic solution (z∗t )t∈N to (4.2)

with E‖z∗t‖rm < ∞. Moreover, ‖zt − z∗t‖ converges exponentially almost surely to zero

as t→∞, which implies that

lim inf
t→∞

‖zt‖ <∞ a.s.

and that, for every realisation, there exists a constant d > 0 such that ‖zt‖i ≤ ‖z∗t‖i + d

for all t ≥ 0 and 0 ≤ i ≤ m.

Next, we repeatedly expand the term Hxx in (4.7) to obtain the following expression

for the transformed perturbation path:

xt = H t
xx0 +

t−1∑
k=0

Hk
x (H0 +Hzzt−k +D(xt−1−k, zt−k)) .

We now use Proposition 4.7.1 to bound the deviation terms and then use the bounds on
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the path (zt)t≥0 to obtain

‖xt‖ − ‖Hx‖t‖x0‖

≤
t−1∑
k=0

‖Hx‖k
(
‖H0‖+ ‖Hz‖‖zt−k‖+ c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖zt−k‖i
))

≤
t−1∑
k=0

‖Hx‖k
(
‖H0‖+ ‖Hz‖(‖z∗t−k‖+ d) + c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z∗t−k‖i + d

))
(4.16)

Next we artificially extend (z∗t )t≥0 to a stationary ergodic sequence (z∗t )t∈Z and then note

that (4.16) is bounded by

Yt :=
∞∑
k=0

‖Hx‖k
(
‖H0‖+ ‖Hz‖(‖z∗t−k‖+ d) + c

m∑
j=0

τ−j/2

(
m−j∑
i=0

‖z∗t−k‖i + d

))
.

The term within the brackets is stationary ergodic by Krengel’s lemma, see Proposition

4.3 in Krengel (1985), and the fact that (z∗t )t∈Z is stationary ergodic. Moreover it has a

finite log moment since E‖z∗t‖rm < ∞. Next, we can choose a matrix norm such that

‖Hx‖ < 1 by Assumption A2. Therefore, the infinite sum converges almost surely by

Proposition 2.5.1 of Straumann (2005). Again, the sequence (Yt)t∈Z is stationary ergodic

by Krengel’s lemma and thus there almost surely exists an M > 0 such that {Yt ≤ M}

occurs for infinitely many t > 0. We conclude that

lim inf
t→∞

||xt|| ≤M <∞.

Proof of Theorem 4.3.2

We study the processes (zt)t≥0 and (xt)t≥0 as a joint Markov process. This section will

make extensive use of Meyn and Tweedie (1993). We will first assume that (zt,xt)t≥0 is a

ψ-irreducible and aperiodic T -chain. See sections 4.2, 5.4 and 6.2 of Meyn and Tweedie

(1993) for a detailed discussion on these properties.

Proposition 4.7.2. Suppose (zt,xt)t≥0 is a ψ-irreducible and aperiodic T -chain and let

Assumptions A and B hold. Then all the results of Theorem 4.3.2 hold.
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PROOF. We will check the drift condition for t-step transitions, which is described in

condition (iii) of Theorem 1 in Saı̈di and Zakoian (2006), adapted from Theorem 19.1.3

in Meyn and Tweedie (1993) and originally suggested by Tjøstheim (1990). The condition

states that we need to find a non-negative function V : X ×Z → R and a t ∈ N such that

E (V (xt, zt) | x0 = x, z0 = z)

V (x, z)
(4.17)

is finite on a compact set C ⊆ X × Z and smaller than one outside of C. Note that the

set C actually has to be petite, but all compact sets are petite in a ψ-irreducible T -chain,

Theorem 6.2.5 in Meyn and Tweedie (1993). It then follows by Theorem 1 in Saı̈di and

Zakoian (2006) that there exists a unique stationary ergodic solution (x∗t , z
∗
t )t≥0 that is

geometrically ergodic and has the required moments, given our choice for V . Absolute

regularity follows from Theorem 1 in Davydov (1974) and the laws of large numbers

follow from Theorem 17.0.1 in Meyn and Tweedie (1993). The reason that we resort

to t-step, instead of 1-step, transitions is that Assumption A1 and Assumption A2 do

not guarantee that there exists a matrix norm such that both ‖Λ‖ < 1 and ‖Hx‖ < 1.

Assumption A1 can ensure that there exists a matrix norm such that ‖Λ‖ < 1, but then

Assumption A2 only provides the existence of a t ∈ N such that ‖H t
x‖ < 1 by Gelfand’s

formula.

We adopt the ideas of Cline and Pu (1999) and use the test function

V (x, z) = 1 + (‖x‖+ ω‖z‖m)r ,

where we will choose ω > 0 sufficiently large. If r ≤ 1, then (‖x‖ + ω‖z‖m)r ≤

‖x‖r +ωr‖z‖rm. We prove the theorem for the case r ≥ 1, as it is the harder case. In that

case Minkowski’s inequality provides the upper bound

E((‖xt‖+ ω‖zt‖m)r | x0, z0) ≤
(
E(‖xt‖r | x0, z0)

1
r + ωE(‖zt‖rm | x0, z0)

1
r

)r
.

We start by bounding the second expectation. Note that the expectations E‖σηεs‖rm are

bounded for all s ∈ {1, . . . , t} by Assumption A3. Expanding backwards and working
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out brackets then gives

E (‖zt‖rm | z0) ≤ E
((
‖Λtz0‖+ ‖Λt−1ε1‖+ · · · ‖εt‖

)rm | z0

)
≤ ‖Λ‖trm‖z0‖rm + o (‖z0‖rm) as ‖z0‖ → ∞.

(4.18)

Next, by Proposition 4.7.1 there exist constants c1, c2 > 0 such that ‖D(xs−1, zs)‖ <

c1 + c2(1 + ‖zs‖m) for all s ∈ {1, . . . , t}. It then follows again by backwards expansion

and the fact that ‖zs‖ ≤ 1 + ‖zs‖m that there exist constants d1, d2 > 0 such that

E (‖xt‖r | x0, z0) ≤ E

(∥∥∥∥∥H t
xx0 +

t−1∑
k=0

Hk
x (H0 +Hzzt−k +D(xt−1−k, zt−k))

∥∥∥∥∥
r

| x0, z0

)

≤ E

((
‖H t

x‖‖x0‖+ d1 + d2

t−1∑
k=0

‖zt−k‖m
)r

| x0, z0

)
≤
(
‖H t

x‖‖x0‖+O (‖z0‖m)
)r as ‖z0‖ → ∞.

The last inequality follows by repeated application of Minkowski’s inequality in combi-

nation with the same calculations as in (4.18). Filling everything in then upper bounds

(4.17) by

1 + (‖H t
x‖‖x‖+ (‖Λ‖tm + ω−1O (1))ω‖z‖m + o (‖z‖m))

r

1 + (‖x‖+ ω‖z‖m)r
as ‖z‖ → ∞.

Recall that ‖H t
x‖ < 1 and ‖Λ‖ < 1 and choose ω large enough such that ‖Λ‖tm +

ω−1O(1) < 1 as ‖z‖ → ∞. Then we can make the fraction smaller than one if we choose

‖x‖, ‖z‖ > M for a sufficiently large M . Let C = {(x, z) ∈ X × Z | ‖x‖, ‖z‖ ≤ M},

then (4.17) is bounded over C and smaller than one outside of C. �

It remains to be proven that (zt,xt)t≥0 is a ψ-irreducible and aperiodic T -chain, which

follows from the results of sections 6.0 - 1 of Meyn and Tweedie (1993). We have,

similarly to Proposition 6.1.2 and 6.1.3, that Assumption B2 ensures that the Markov

chain is strong Feller. It then follows by Proposition 6.1.5 and Assumption B1 that the

Markov chain is ψ-irreducible. Finally, we conclude that (xt)t≥0 is an aperiodic T -chain

by Lemma 6.1.4 and part (iii) of Theorem 6.0.1.
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Proof of Proposition 4.3.3

It is clear that Assumption C3 implies Assumption B2, so it remains to prove Assumption

C also implies Assumption B1. We will prove a stronger statement: Fix any x∗ ∈ X then

that point is reachable. Let t be the smallest integer such that assumption C1 holds. The

approach will be to show that we can find values for z1, . . . , zt that bring xt arbitrarily

close to x∗. It then follows by Assumption C3 that we have positive probability of xt

being arbitrarily close to x∗.

To find the values for the exogenous state variables, we start by expanding xt back in

time as

xt =
t−1∑
k=0

Hk
xH0 +H t

xx0

+
[
H t−1

x Hz · · · HxHz Hz

] [
z′1 z′2 · · · z′t

]′
+

t−1∑
k=0

Hk
xD(xt−1−k, zt−k).

Assumption C1 ensures that we can select nx linearly independent columns from the ma-

trix
[
H t−1

x Hz · · · HxHz Hz

]
, which we denote a1, . . . , anx . Let A =

[
a1 . . . anx

]
and let δ =

[
δ1 . . . δnx

]′
be the vector consisting of the univariate stochastic variables

inside
[
z′1 z′2 · · · z′t

]′
that correspond to the columns a1, . . . , anx . Then, by setting the

random variables corresponding to the other columns equal to zero, we get

xt =
t−1∑
k=0

Hk
xH0 +H t

xx0 + Aδ +
t−1∑
k=0

Hk
xD(xt−1−k, zt−k). (4.19)

Suppose all the deviations are zero, then we immediately obtain that we need to choose

δ = A−1

(
x∗ −

t−1∑
k=0

Hk
xH0 −H t

xx0

)
. (4.20)

Generally, the deviations are nonzero, so that the choice (4.20) does not guarantee that xt
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is close to x∗. In fact we would obtain

xt = x∗ +
t−1∑
k=0

Hk
xD(xt−1−k, zt−k). (4.21)

The idea is then as follows. We show that sample paths can reach arbitrarily large values,

and then take such a large value to be our starting point x0. We then show that as the

starting point gets larger our choice for δ will get larger according to (4.20) and the whole

path from x0 to xt will be arbitrarily large. Since deviations converge to zero away from

the steady state we conclude that we can get xt arbitrarily close to x∗.

Formally, the deviations in (4.19) are nonlinear, which together with Assumption C2

and the fact that A is invertible means that we can for any starting point x0 reach a point

xt ∈ X such that H t
xxt =

∑nx

i=1 λiai has all λi ∈ R arbitrarily large. Therefore we can

assume the same for our starting point x0, that is, for all d > 0 we can choose x0 such

that H t
xx0 =

∑nx

i=1 λiai with |λi| > d for all 1 ≤ i ≤ nx. It immediately follows from

(4.20) that each |δi| goes to infinity linearly in d as we increase d.

Next, we show that increasing d ensures that each ‖xt−j‖ for 0 < j < t becomes

arbitrarily large. Let A(j) and δ(j) be the sub-matrix respective sub-vector of A and δ

such that for partially expanding xt we have

xt =

j−1∑
k=0

Hk
xH0 +Hj

xxt−j + A(j)δ(j) +

j−1∑
k=0

Hk
xD(xt−1−k, zt−k).

Note that A(j) and δ(j) are nonempty since we chose t as small as possible. Combining

this with (4.21) gives

Hj
xxt−j = x∗ −

j−1∑
k=0

Hk
xH0 − A(j)δ(j) +

t−1∑
k=j

Hk
xD(xt−1−k, zt−k).

It then follows, since ‖xt−j‖ ≥ ‖Hj
x‖−1‖Hj

xxt−j‖, that we get

‖xt−j‖ ≥ ‖Hj
x‖−1

(∥∥A(j)δ(j)
∥∥− ‖x∗‖ − ∥∥∥∥∥

j−1∑
k=0

Hk
xH0

∥∥∥∥∥−
∥∥∥∥∥
t−1∑
k=j

Hk
xD(xt−1−k, zt−k)

∥∥∥∥∥
)
.

(4.22)
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The remaining part of the proof is a recursive argument. We start at j = t − 1, in which

case (4.22) gives

‖x1‖ ≥ d1

(∥∥A(t−1)δ(t−1)
∥∥− ‖D(x0, z1)‖

)
+ d2.

This goes to infinity linearly in d as we increase d, as the first norm increases linearly with

d while

lim
d→∞

D(x0, z1) = 0,

because the deviation is exponentially fast decreasing in its first argument and increasing

at only a polynomial rate in its second argument. Next, since ‖x1‖ goes to infinity linearly

in d, it follows by a similar argument

‖x2‖ ≥ d2

(∥∥A(t−2)δ(t−2)
∥∥− ‖D(x1, z2) +HxD(x0, z1)‖

)
+ d3

goes to infinity linearly in d as we increase d. Iterate until xt−1 to conclude that each

‖xt−j‖ for 0 < j ≤ t increases linearly with d to infinity and thus we can always choose

d large enough to ensure that the deviations in (4.21) are arbitrarily close to zero.

4.7.2 Proofs of Section 4.4

Proof of Lemma 4.4.1

We can rewrite

∞∑
k=0

ρ(Hx)kδt−k = (1− ρ(Hx))
∞∑
k=0

δt−k

∞∑
j=k

ρ(Hx)j = (1− ρ(Hx))
∞∑
j=0

ρ(Hx)j
j∑

k=0

δt−k.

Next, (δt)t∈Z is a stationary ergodic sequence by Krengel’s lemma, Proposition 4.3 in

Krengel (1985), and Eδt−k < ∞ by the assumption that E‖εt‖m < ∞ and part (ii) of
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Theorem 4.3.2. Therefore a law of large numbers holds and thus

lim
ρ(Hx)→1

(1− ρ(Hx))
∞∑
k=0

ρ(Hx)kδt−k = lim
ρ(Hx)→1

(1− ρ(Hx))2

∞∑
j=0

ρ(Hx)j
j∑

k=0

δt−k

= lim
ρ(Hx)→1

(1− ρ(Hx))2

∞∑
j=0

ρ(Hx)j(j + 1)Eδt−k

= Eδ0.

4.7.3 Proofs of Section 4.5

Proof of Proposition 4.5.1

Note that

‖h(m)
tp (x, z, σ)− h(x, z, σ)‖

≤ ‖h(m)
tp (x, z, σ)− h(m)

p (x, z, σ)‖+ ‖h(m)
p (x, z, σ)− h(x, z, σ)‖.

Now,

lim
m→∞

sup
(x,z,σ)∈S

‖h(m)
tp (x, z, σ)− h(m)

p (x, z, σ)‖ = 0,

because S is compact and τ → 0 as m→∞ and

lim
m→∞

sup
(x,z,σ)∈S

‖h(m)
p (x, z, σ)− h(x, z, σ)‖ = 0,

by the assumptions that the true policy function is analytic over a compact set S and the

Weierstrass M-test.

Proof of Proposition 4.5.2

This result follows immediately by noticing that setting τ = 0 makes the transformed

polynomials equal to the regular polynomials. Therefore we can always find a τ for

which transformed perturbation performs equally or better than regular perturbation.
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Proof of Proposition 4.5.3

Let (x̄t)t≥0 be the path generated by the m’th order perturbation policy function, also

initialised at the origin. Additionally, let vt = (xt−1, zt) and v̄t = (x̄t−1, zt). Throughout

this proof we let ‖ · ‖ be the infinity norm, or maximum norm.

It follows from the exogenous variable updating function in (4.2) and the fact that

z0 = 0nz that

‖zt‖ ≤ ‖Λ‖‖zt−1‖+ σ‖ηεt‖ = ‖Λ‖‖zt−1‖+O(σ)

= ‖Λ‖t‖z0‖+O(σ) = O(σ), ∀t ∈ N.

Next, we proof by induction that ‖x̄t‖ = O(σ) for all t ∈ N. It is true for t = 1, since

x0 = 0nx and thus

‖x̄1‖ ≤ ‖H0‖+ ‖Hz‖‖z1‖+
m∑
i=2

‖Hi‖‖v̄1‖i

= O(σ) +O(σ) +
m∑
i=2

‖Hi‖‖z1‖i = O(σ),

where we used that ‖z1‖ = O(σ) by the previous derivation and ‖H0‖ = O(σ) by the

definition of H0. Similarly, if ‖x̄t−1‖ = O(σ), then

‖x̄t‖ ≤ ‖H0‖+ ‖Hx‖‖x̄t−1‖+ ‖Hz‖‖zt‖+
m∑
i=2

‖Hi‖‖v̄t‖i = O(σ).

We proceed by showing via induction that ‖x̄t − xt‖ = O(σm+1) and ‖xt‖ = O(σ) for

all t ∈ N. This is true for t = 1, since by the reverse triangle inequality and the properties

of a Taylor approximation we have that

|‖x̄1‖ − ‖x1‖| ≤ ‖x̄1 − x1‖ = ‖hp(v1, σ)− h(v1, σ)‖

= O
(
‖(v1, σ)‖m+1

)
= O

(
‖(z1, σ)‖m+1

)
= O

(
σm+1

)
.
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If the statement hold for t− 1, then likewise

|‖x̄t‖ − ‖xt‖| ≤ ‖x̄t − xt‖ = ‖hp(v̄t, σ)− h(vt, σ)‖

≤ ‖hp(v̄t, σ)− hp(vt, σ)‖+ ‖hp(vt, σ)− h(vt, σ)‖

The second term is of O (σm+1) by the same argument as before. The first term requires

a bit more work

‖hp(v̄t, σ)− hp(vt, σ)‖ ≤ ‖Hx‖‖x̄t−1 − xt−1‖+
m∑
i=2

‖Hi‖

∥∥∥∥∥⊗
i

v̄t −
⊗
i

vt

∥∥∥∥∥ ,
which is O (σm+1) since∥∥∥∥∥⊗

i

v̄t −
⊗
i

vt

∥∥∥∥∥ ≤ i‖v̄t − vt‖max{‖v̄t‖, ‖vt‖}i−1

= i‖x̄t−1 − xt−1‖‖(v̄t,vt)‖i−1 = O
(
σm+1

)
.

The next step is to show that ‖x̄t− x̂t‖ = O
(
σmin{m+1,4}) and ‖x̂t‖ = O(σ) for all t ∈ N.

Since x0 = 0nx we have ‖x̄1 = x̂1‖. Let v̂t = (x̂t−1, zt) and suppose the statement holds

for t− 1, then similarly as before we have

|‖x̄t‖ − ‖x̂t‖| ≤ ‖x̄t − x̂t‖ ≤ ‖Hx‖‖x̄t−1 − x̂t−1‖

+
m∑
i=2

‖Hi‖

∥∥∥∥∥⊗
i

v̄t−1 −
⊗
i

v̂t−1

∥∥∥∥∥
+

m∑
i=2

‖Hi‖‖v̂t−1‖i−1
∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥
= O

(
σmin{m+1,4})+O

(
σmin{m+1,4})+O

(
σ2
) ∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥ .
Note that

∥∥∥1− Φτ

(
˜̂xt−1

)∥∥∥ =
∥∥∥1− e−τ‖˜̂xt−1‖2e

∥∥∥ = O(‖x̂t−1‖2) = O
(
σ2
)
,
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so that the result follows. The proposition is now proved by putting everything together:

‖x̂t − xt‖ ≤ ‖x̂t − x̄t‖+ ‖x̄t − xt‖ = O
(
σmin{m+1,4})+O

(
σm+1

)
= O

(
σmin{m+1,4}) .

Proof of Proposition 4.5.4

We start by showing that condition (4.14) ensures that the true policy function produces

nonexplosive sample paths. This follows from Theorem 9.4.1 in Meyn and Tweedie

(1993), which states that we have to find a non-negative function V : X × Z → R

such that

E (V (x1, z1) | x0 = x, z0 = z)

V (x, z)
< 1 (4.23)

for all x and z outside of a compactC ⊆ X×Z . We use the function V (x, z) = ‖x‖+‖z‖

and obtain similarly to the proof of Theorem 4.3.2 that there exists a constant d such that

(4.23) is bounded by

E(‖h(x, z1, σ)‖ | z0 = z) + ‖Λ‖‖z‖
‖x‖+ ‖z‖

+
d

‖x‖+ ‖z‖
.

Increasing x can make the first fraction smaller than one by condition (4.14), while the

second fraction can be made arbitrarily small. Therefore there exists an M > 0 such that

(4.23) is satisfied for all x, z > M .

Next we show that condition (4.14) implies (4.15). Note that condition (4.14) and

Assumption C3 imply that

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

<∞

for all possible values of z and σ outside of a set of Lebesque measure zero. However,

since hp(x, z, σ) contains a nonzero higher order monomial in x we have

lim inf
‖x‖→∞

‖hp(x, z, σ)‖
‖x‖

=∞.

for all nonzero values of z and σ. Finally, since the deviations in transformed perturbation
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go to zero away from the steady state we have

lim sup
‖x‖→∞

‖htp(x, z, σ)‖
‖x‖

= ‖Hx‖ <∞.

It immediately follows that the difference between the true and the perturbed policy func-

tions become infinitely many times larger than the errors between the true and the trans-

formed perturbation policy functions as ‖x‖ goes to infinity.

In the last part we show that conditions (i), (ii) and (iii) imply (4.14). Condition (i)

follows from the reverse Fatou lemma as

lim sup
‖x‖→∞

E(‖h(x, z1, σ)‖ | z0 = z)

‖x‖
< E

(
lim sup
‖x‖→∞

‖h(x, z1, σ)‖
‖x‖

∣∣∣∣∣ z0 = z

)
< 1.

Condition (ii) immediately implies condition (i) and condition (iii) implies condition (i)

since

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

= lim sup
‖x‖→∞

‖h(ax, z, σ)‖
‖ax‖

≤ lim sup
‖x‖→∞

‖h(ax, z, σ)‖
‖h(x, z, σ)‖

lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖ax‖

=
1

a
lim sup
‖x‖→∞

‖h(x, z, σ)‖
‖x‖

= 0.
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Summary

This thesis has explored the concept of stability for time series in a number of settings:

purely theoretical, finance and macro economics. It has started of in Chapter 2 by intro-

ducing a new invertibility condition that opens the door for statistical analysis of a class of

resetting models. Specifically, moderate conditions for stationarity, ergodicity and mixing

are provided and discussed. The assumptions seem strict at first, but have many possible

applications in models containing bubble collapses or regime switching models in gen-

eral. One such application is explored in Chapter 3, where a new model for the study

of speculative financial bubbles is discussed. This model includes explosive regions and

discontinuities within the state space that allow for more flexibility to describe bubble

behavior. A demonstration of the flexibility is included by filtering the Bitcoin/US dollar

exchange rate.

Stability in a macro economic setting is explored in Chapter 4, where various approx-

imation methods to the solution of dynamic stochastic general equilibrium models are

studied. It is discussed how the widely used perturbation method provides sample paths

that do not satisfy desirable stochastic properties needed for parameter estimation and sta-

tistical inference. Chapter 4 provides a correction that does produce stable solution paths

by multiplying higher order monomials with a decaying exponential and denotes this so-

lution method transformed perturbation. This solution method is fast, easy to implement

and very accurate within the setting of local approximation methods. A very detailed

comparison study including various highly nonlinear models highlights the advantages of

the method.





Samenvatting

Dit proefschrift bestudeert de stabiliteit van tijdreeksen in verschillende kaders: puur the-

oretisch, financieel en macro-economisch. Hoofdstuk 2 introduceert een nieuwe conditie

voor invertibiliteit die de deur opent voor de statistische analyse van een klasse resetmod-

ellen. Specifiek worden milde voorwaarden voor stationariteit, ergodiciteit en mixing

voorzien en besproken. De aannames lijken aanvankelijk streng, maar zijn breed toepas-

baar in modellen met ineenstortende bubbels of regime-switching-modellen. Een dergeli-

jke toepassing is onderzocht in Hoofdstuk 3, waar een nieuw model voor de studie van

speculatieve financiële bubbels wordt besproken. Dit model bevat explosieve gebieden

en discontinuı̈teiten in de toestandsruimte die meer flexibiliteit geven om het gedrag van

bubbels te beschrijven. Die flexibiliteit wordt gedemonstreerd der mate van een filter

toepassing op de Bitcoin / US dollar wisselkoers.

Stabiliteit in een macro-economisch kader wordt onderzocht in Hoofdstuk 4, waar

verschillende benaderingsmethoden voor de oplossing van dynamic stochastic general

equilibrium modellen worden bestudeerd. Eerst wordt besproken hoe de veel gebruikte

perturbation methode databanen genereert die niet voldoen aan de gewenste stochastische

eigenschappen die nodig zijn voor parameterschatting en statistische inferentie. Hoofd-

stuk 4 biedt een correctie, genaamd transformed perturbation, die stabiele databanen

oplevert door monomen van hogere orde te vermenigvuldigen met een exponentieel snel

dalende functie. Deze nieuwe oplossingsmethode is snel, eenvoudig te implementeren

en erg nauwkeurig voor een lokale benaderingsmethode. Een zeer gedetailleerde vergeli-

jkingsstudie met verschillende niet-lineaire modellen demonstreert de voordelen van de

methode.
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This dissertation studies stochastic dynamic systems and their stability 
properties such as stationarity, ergodicity and mixing. It introduces various 
new theoretical results that can be used to obtain these properties for large 
classes of systems that were previously inaccessible. Such a model is then 
introduced and studied to describe time series data containing explosive 
bubble behaviour, including an empirical study on the Bitcoin/US dollar 
exchange rate. Stability is also studied for a collection of macro economic 
stochastic equilibrium models in terms of approximating solution methods. 
Requiring stability in such a setting gives motivation to a new solution 
method denoted transformed perturbation, which is demonstrated to perform 
very well relative to existing local approximation methods. 
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